
Learning to Collaborate: Multi-Scenario Ranking via
Multi-Agent Reinforcement Learning*

Jun Feng1,†, Heng Li2,†, Minlie Huang1,∗, Shichen Liu2, Wenwu Ou2, Zhirong Wang2, Xiaoyan Zhu1
1State Key Lab on Intelligent Technology and Systems, Tsinghua National Lab for Information Science and Technology

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Alibaba Group, Hangzhou, China

feng-j13@mails.tsinghua.edu.cn;heng.lh@alibaba-inc.com;aihuang@tsinghua.edu.cn;santong.oww@taobao.com;
qingfeng@alibaba-inc.com;zxy-dcs@tsinghua.edu.cn

ABSTRACT
Ranking is a fundamental and widely studied problem in scenarios
such as search, advertising, and recommendation. However, joint
optimization for multi-scenario ranking, which aims to improve the
overall performance of several ranking strategies in different sce-
narios, is rather untouched. Separately optimizing each individual
strategy has two limitations. The first one is lack of collaboration
between scenarios meaning that each strategy maximizes its own
objective but ignores the goals of other strategies, leading to a sub-
optimal overall performance. The second limitation is the inability
of modeling the correlation between scenarios meaning that inde-
pendent optimization in one scenario only uses its own user data but
ignores the context in other scenarios.

In this paper, we formulate multi-scenario ranking as a fully
cooperative, partially observable, multi-agent sequential decision
problem. We propose a novel model named Multi-Agent Recurrent
Deterministic Policy Gradient (MA-RDPG) which has a commu-
nication component for passing messages, several private actors
(agents) for making actions for ranking, and a centralized critic for
evaluating the overall performance of the co-working actors. Each
scenario is treated as an agent (actor). Agents collaborate with each
other by sharing a global action-value function (the critic) and pass-
ing messages that encodes historical information across scenarios.
The model is evaluated with online settings on a large E-commerce
platform. Results show that the proposed model exhibits significant
improvements against baselines in terms of the overall performance.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; • The-
ory of computation → Multi-agent reinforcement learning;

KEYWORDS
multi-agent learning, reinforcement learning, learning to rank, joint
optimization

*Corresponding author: Minlie Huang, aihuang@tsinghua.edu.cn
†Both authors contributed equally to this study.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186165

Figure 1: A competitive game for two sellers (A and B) selling
snacks in a long beach. The top figure shows the initial location,
the middle one shows the competing process, and the bottom
one shows a solution when the two sellers are competitors. Peo-
ple in red are likely to buy snacks at A, and people in blue at B.
People in grey are those beyond the scope of A and B.

ACM Reference Format:
Jun Feng1,†, Heng Li2,†, Minlie Huang1,∗, Shichen Liu2, Wenwu Ou2, Zhi-
rong Wang2, Xiaoyan Zhu1. 2018. Learning to Collaborate: Multi-Scenario
Ranking via Multi-Agent Reinforcement Learning. In Proceedings of The
2018 Web Conference (WWW 2018). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3178876.3186165

1 INTRODUCTION
Nowadays, most large-scale online platforms or mobile Apps have
multiple scenarios that may involve services such as search, adver-
tising, and recommendation. There are some well-known platforms
of different kinds. Taobao is an E-commerce platform where users
can search for and buy products through querying, bookmarking, or
recommendation. Yahoo! is a comprehensive web site where users
can read news, watch movies, make shopping, and more. One of the
common features of these services is that ranking strategy serves
as a fundamental function to provide a list of ranked items to users.
Machine learning techniques have been widely applied in optimizing
these ranking strategies [8, 28, 32, 50] to facilitate better services
for search, advertising, or recommendation.

However, ranking strategy in one scenario only optimizes its own
metric, without considering the correlation between scenarios (or ap-
plications). In these platforms, strategies in different scenarios may
be developed by different teams, and optimized by different methods
with different metrics. Such metrics may include Click Through Rate

https://doi.org/10.1145/3178876.3186165
https://doi.org/10.1145/3178876.3186165

(CTR), Conversion Rate (CVR), and Gross Merchandise Volume
(GMV). However, separate optimization of single scenario cannot
guarantee the globally optimal performance of the entire platform.
Instead, if the strategies in different scenarios can work collabora-
tively, we can expect a better overall performance. Let’s illustrate
this with a toy example. In a long beach, as shown in Figure 1, there
are two sellers (denoted by A and B), located at different positions
for selling their snacks. The top figure indicates the initial location,
where people on the left side of the beach buy snacks at A and people
on the right at B. The middle figure shows that when A moves right,
he can sell more snacks (A can cover more people than B). Similar
cases to B. The bottom figure indicates an optimal solution to this
non-cooperative game, where the two sellers compete with each
other and they are both at the center of the beach. However, this is
a definitely sub-optimal solution if we want to optimize the total
income of the two sellers, as some people(in grey) are beyond the
scope of them.

This simple example demonstrates that collaboration between
scenarios in a system is extremely important if the objective is to
optimize the total return of the system. This is also the case for E-
commerce platforms which have many different scenarios in service.
In a large E-commerce platform, we indeed observed competitor
behaviors: increasing CTR in product search drops that in search
advertisement systems, and increasing GMV in main search (the
entrance search service of the system) may drop that in-shop search
(the search service within a certain shop). The famous Cournot
model [11] can be another example, denoting that if there are more
than one oligarch in the market, the total revenue becomes more if
the oligarchs are cooperative with each other, but less if they are com-
petitive. When ranking strategies in different scenarios are optimized
independently but not collaboratively, each strategy maximizes its
own objective but ignores the goals of other strategies, leading to a
sub-optimal overall performance. We term this issue as the lack of
collaboration between scenarios.

Another limitation caused by independent optimization exists in
the inability of modeling the correlation between scenarios. The
user behaviors in different scenarios are correlated and indicative of
what they are looking for, which is valuable for optimizing ranking
algorithms. Our investigation, on a corpus which consists of user
logs of millions of users from Taobao(a large E-commerce platform
in China), shows that 25.46% switches from main search to in-shop
search and 9.12% switches from in-shop search to main search. In
addition, scenario switch not only happens between main search
and in-shop search, but also among other scenarios such as main
search, advertising, and recommendation. Undoubtedly, independent
optimization in one scenario only uses the partial information (the
data within its own scenario) of the user behavior data, which may
lead to suboptimal performance.

In order to deal with the above limitations, we propose a novel
model for joint multi-scenario ranking in this paper. The model
jointly optimizes ranking strategies for different scenarios through
collaboration. In detail, different ranking strategies in a system share
an identical goal. The ranking results in one scenario are based
on the previous ranking results and user behaviours from all other
scenarios. In this way, the ranking strategies collaborate with each
other by sharing the same goal; and since each strategy has access

to all historical user data across different scenarios, the algorithm
within a scenario can make full use of the complete user context.

We cast the multi-scenario ranking task as a fully cooperative,
partially observable, multi-agent sequential decision problem. The
sequential process works as follows: a user enters a scenario, and
browses, clicks or buys some items, and then the search system
(the model) changes its ranking strategy by adjusting the ranking
algorithm when the user navigates into a new scenario or issues a
new request. The process is repeated until the user leaves the system.
Thus, the current ranking decision definitely affects the following
decisions.

We propose a novel model named Multi-Agent Recurrent Deter-
ministic Policy Gradient (MA-RDPG). Each ranking strategy in one
scenario is treated as an agent. Each agent takes local observations
(user behavior data) and makes local actions for ranking items with
its private actor network. Different agents share a global critic net-
work to enable them to accomplish the same goal collaboratively.
The critic network evaluates the future overall rewards starting from
a current state and taking actions. The agents communicate with
each other by sending messages. The messages encode historical
observations and actions by a recurrent neural network such that
agents have access to all historical information. In this manner, our
model can optimize ranking strategies in multiple scenarios jointly
and collaboratively, and utilizes the complete user behavior data
across different scenarios.

The contributions of this paper include:
• We formulate multi-scenario ranking (or optimization) as a

fully cooperative, partially observable, multi-agent sequential
decision problem.

• We propose a novel, general multi-agent reinforcement learn-
ing model named Multi-Agent Recurrent Deterministic Policy
Gradient. The model enables multiple agents (each corre-
sponding to a scenario) to work collaboratively to optimize
the overall performance.

• We evaluate the model with online settings in Taobao, a large
online E-commerce platform in China. Results show our
model has advantages over strong baselines (Learning-to-
rank models).

2 BACKGROUND
2.1 Ranking Strategy
Learning to rank (L2R) [33] has been widely applied to deploy
ranking strategies in many online platforms. The basic idea of L2R
models is that the ranking strategy can be learned and optimized
using a set of training samples. Each sample consists of a query
and a ranked list of items/documents relevant to that query. The
ranking function computes a score for each item with a set of features.
The parameters of the ranking function can be learned by various
algorithms, such as point-wise [15, 29], pair-wise [2, 37], and list-
wise methods [3, 6].

2.2 Reinforcement Learning
Reinforcement learning[42] is a framework that enables an agent to
learn through interactions with the environment. At each step t , an
agent receives the observation ot of the environment, and takes an
action at based on a policy µ. The environment changes its state st ,

and sends a reward rt to the agent. The goal of the agent is to find a
policy that maximizes the expected cumulative discounted reward
R(st ,at) = r (st ,at) + γr (st+1,at+1) + γ 2r (st+2,at+2) + . . . , where
γ is a discount factor. Generally speaking, reinforcement learning
methods can be classified into several branches, including policy-
based [43], value-based [35], and actor-critic [25] which combines
the two.

Next, we will give a brief introduction to DDPG [30] and DRQN [18]
models, which are closely related to our proposed model.

2.2.1 DDPG. Deep Deterministic Policy Gradient (DDPG) is
an actor-critic approach, which can be applied to solve the continu-
ous action problems. DDPG maintains a policy function µ(st) and
an action-value function Q(st ,at), which are approximated by two
deep neural networks respectively, actor network and critic network.
The actor network µ(st) deterministically maps a state to a specific
action: at = µ(st). The critic network Q(st ,at) estimates the future
cumulative rewards after taking action at at state st . In this paper,
we employ a deterministic policy where the actor network outputs
at = µ(st) which corresponds to the weight of a particular feature
in a ranking algorithm. In other words, the action in our model is
continuous, and DDPG is thus applicable.

2.2.2 DRQN. In real-world applications, the state of the envi-
ronment may be partially observed. The agent is unable to observe
the full state of the environment. Such a setting is called partially
observable. Deep Recurrent Q-Networks (DRQN) are introduced to
address the partial observation problem by considering the previous
context with a recurrent structure. DRQN uses a Recurrent Neutral
Network architecture to encode previous observations before the cur-
rent timestep. Instead of estimating the state-action value function
Q(st ,at) in Deep Q-Networks [35], DQRN estimatesQ(ht−1,ot ,at),
where ht−1 is the hidden state of the RNN which encodes the in-
formation of previous observations o1,o2, . . . ,ot−1. The recurrent
network essentially applies this function to update its hidden states:
ht = д(ht−1,ot) where д is a non-linear function.

2.3 Multi-Agent Reinforcement Learning
In multi-agent reinforcement learning (MARL) problems [4, 22, 31,
36], there are a group of autonomous, interacting agents sharing a
common environment. Each agent receives their individual observa-
tions and rewards when taking an action based on each individual
policy function. The agents can be fully cooperative, fully com-
petitive, or with mixed strategies. Fully cooperative agents share a
common goal and maximize the same expected return. Fully compet-
itive agents have private goals opposite to each other (for instance,
zero-sum games). Mixed strategies are in between the two extremes.

3 METHOD
To alleviate the two issues mentioned in the introduction section,
we jointly optimize the ranking algorithms in multiple scenarios to
maximize the overall returns by casting the task as a multi-agent
reinforcement learning problem. We propose a novel model, named
Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG).
In this model, a ranking strategy in one scenario corresponds to an
agent, and agents collaborate with each other to accomplish the same
goal that optimizes the overall performance.

Environment

Actor 1 Actor 2

Communic
ation

Critic

Observation Action Action
Observation

Observation

Action

Observation

Action

Message

Observation

Figure 2: Overall model architecture. The model has a central-
ized, global critic network to evaluate the overall rewards. A
communication module is used to generate messages that are
shared among actors. Messages encode historical observations
and actions, and can be used to approximate the global state of
the environment. Each actor network represents an agent which
receives its own local observations and a communication mes-
sage, and makes private actions.

3.1 Problem Description
We formulate this task as a fully cooperative, partially observable,
multi-agent sequential decision problem. More specifically:
Multi-Agent: there exist multiple ranking strategies/algorithms for
different scenarios in a system. Each agent represents a ranking
strategy and learns its own policy function which maps a state to a
specific action.
Sequential Decision: users sequentially interact with the system.
Thus, the agent actions are also sequential. At each step, the agent,
which represents the scenario interacting currently with the users,
chooses an action to respond to the user through a sorted list of items.
The current actions affect the following actions in the future.
Fully Cooperative: all agents are fully cooperative to maximize a
shared metric. Moreover, the agents pass messages to each other
for communication, and the overall performance of these agents are
evaluated by a centralized critic.
Partially Observable: The environment is partially observable, and
each agent only receives a local observation instead of observing the
full state of the environment.

3.2 Model
We design a Multi-Agent Recurrent Deterministic Policy Gradi-
ent (MA-RDPG) model to address the fully cooperative, partially
observable, multi-agent sequential decision problem.

3.2.1 Overview. Figure 2 shows the overall architecture of
our model. For simplicity, we consider the case with two agents,
each agent representing a scenario or strategy to be optimized. In-
spired by DDPG [30], our model is built on top of the actor-critic
approach [25]. We design three key modules to enable the agents
to collaborate with each other: a centralized critic, private actors,
and a communication component. The centralized critic evaluates an
action-value function that indicates the expected future rewards for

critic

actor

LSTM

ot-1

Message ht-1

a t-1

Q (h ,o ,a)t-1 t-1t-2

critic

actor

LSTM

o t

a t

Q (h ,o ,a)t-1 tt

ht

Message ht

Timestep t-1
@Agent

Timestep t
@Agent

a t

=μ(t-1 tat-1=μ(t-2 t-1

iti t-1

i t-1 it

it itit-1 it-1 itit-1

Figure 3: Detailed structure of MA-RDPG. The centralized
critic network estimates the action-value functionQ(ht−1,ot ,at)
which indicates the future overall rewards when taking action
at upon observing message ht−1 and observation ot . The actor
network outputs a deterministic action with ait = µi (ht−1,oit)
given the message and local observation as input. The messages
are updated by a communication component which takes as in-
put the observation ot and action at . Red: Message; Blue: Ob-
servation; Green: Action.

all agents taking actions from the current state. Each agent is repre-
sented by an actor network which maps a state to a specific action
with a deterministic policy. Actions made by each actor network will
be used for the agent to perform optimization in its own scenario.

We design a communication component using a Long Short-Term
Memory (LSTM) architecture [21]. The LSTM encodes all local
observations and the actions of all agents into a message vector. The
message will be sent between agents for collaboration. Thanks to
this component, the decision of each agent depends not only on its
own previous observations and actions, but also on other agents’
observations and actions. In addition, the messages can help the
agents approximate the full state of the environment, which enables
them to act more efficiently.

3.2.2 Model Details. A general reinforcement learning prob-
lem has a sequence of experiences (o1, r1,a1, · · · ,at−1,ot , rt) where
o/r/a correspond to observation/reward/action respectively. As afore-
mentioned, the environment in our problem is partially observable.
In other words, the state st is the summary of the previous experi-
ences: st = f (o1, r1,a1, · · · ,at−1,ot , rt)1. We are considering the
problem with N agents {A1,A2, . . . ,AN }, each agent corresponding
to a particular optimization scenario (ranking, recommendation, etc.).
In this multi-agent setting, the state of the environment (st) is global,
shared by all agents, while the observation (ot = (o1t ,o

2
t , · · · ,o

N
t)),

the action (at = (a1t ,a
2
t , · · · ,a

N
t)), and the intermediate reward

(rt = (r (st ,a1t), r (st ,a
2
t), · · · , r (st ,a

N
t))) are all private, only pos-

sessed by each agent itself.

1In a fully observable environment, st = f (ot).

More specifically, each agent Ai takes action ait with its own pol-
icy specified by µi (st), and obtains a reward r it = r (st ,a

i
t) from the

environment which changes its current state st to the next state st+1.
In our task, all agents are collaborating to achieve the same goal. This
leads to a collaborative setting of multi-agent reinforcement learning.
We have a centralized action-value function Q(st ,a1t ,a

2
t , · · · ,a

N
t)

(as critic) to evaluate the future overall return when taking the ac-
tions (a1t ,a

2
t , · · · ,a

N
t) at the current state. We also have a global state

representation of the environment, and each agent is represented by
a private actor which observes local observations and takes private
actions. Thus, the model belongs to an actor-critic reinforcement
learning approach with a centralized critic and several private actors
(each actor plays its role as an agent).

As shown in Figure 3, at step t , agent Ait receives an current
local observation oitt from the environment. The global state of
the environment, shared by all agents, depends not only on all the
historical states and actions of all agents in the sequential deci-
sion process, but also the current observation ot . In other words,
st = f (o1,a1, · · · ,at−1,ot)2. To this end, we design a communi-
cation component using LSTM to encode the previous observa-
tions and actions of all agents into a message vector. With the
message ht−1 sent between agents, the full state can be approx-
imated as st ≈ {ht−1,ot } since the message ht−1 has encoded
all previous observations and actions (see soon later). Agent Ait

chooses the action aitt = µit (st) ≈ µit (ht−1,oitt) with the pur-
pose of maximizing the future overall rewards estimated by the
centralized critic Q(st ,a1t ,a

2
t , · · · ,a

N
t). Note that at each timestep,

ot = (o1t ,o
2
t , · · · ,o

N
t) consisting of observations by all agents.

Communication Component We design a communication com-
ponent to make the agents collaborate better with each other by
sending messages. The message encodes the local observation and
the actions at previous steps. At step t , agent Ait receives an lo-
cal observation oitt and a message ht−1 from the environment. The
communication component generates a new message ht taking as
input the previous message ht−1 and current observation ot . An
agent can share the information with other collaborators through
the message. As shown in Figure 4, we apply a LSTM architecture
for this purpose. Formally, the communication component works as
follows:

ht−1 = LSTM(ht−2, [ot−1;at−1];ψ) (1)

Note that ot and at consists of observations and actions of all agents
respectively, and each action ait is also a real-valued vector since our
problem is a continuous action reinforcement learning problem.

With the help of the message ht−1, agents have access to an
approximate of the full state of the environment: st ≈ {ht−1,ot }, as
an agent only receives its current observation oit but not the full state
st of the environment.

Private Actor Each agent has a private actor which receives local
observations and shared messages, and makes its own actions. Since
we deal with continuous action problems, we define the agent’s
action as a vector of real values, ai = (wi

1, . . . ,w
i
N i),ai ∈ RN

i
.

Therefore, an action is a N i -dimension vector, and each dimension
is a continuous value. The action vector will be used in ranking
algorithms or to control robots.

2Intermediate rewards rt can be omitted in general for state representation.

LSTM LSTM LSTM LSTM
h1 h2 hT-1

h1 h2

a1o1 a2o2 a3o3 aToT

hT-1 hT

Figure 4: Communication component. The previous observa-
tions (ot) and actions (at) are all taken as input to the LSTM
network. The hidden states (ht−1) are treated as messages which
will be sent between agents. Note that ot ,at are vectors.

Since this is a continuous action problem which can be commonly
seen in control problems [20, 30, 38], we resort to using a determin-
istic policy instead of a stochastic policy. The actor of each agent
µi (st ;θ i), parameterized by θ i , specifies a deterministic policy that
maps states to a specific action. At timestep t , agent Ait takes an
action with its own actor network:

aitt = µ
it (st ;θ it) ≈ µit (ht−1,oitt ;θ

it) (2)

where st ≈ {ht−1,ot } as discussed in the communication component.
In this manner, the actor is conditioned on the message ht−1 and its
own current local observation oitt .

Centralized Critic Following DDPG, we design a critic network
estimating the action-value function to approximate the expected
future total rewards. As all agents share the same goal, we use a cen-
tralized critic Q(st ,a1t ,a

2
t , · · · ,a

N
t ;ϕ) to estimate the future overall

rewards obtained by all agents after taking action at = {a1t , . . . ,a
N
t }

at state st ≈ {ht−1,ot }.
The above formulation is general and applicable to many agents

that are alive all the time. In our setting3, there is only one agent
Ait activated at timestep t , and ot = {oitt } and at = {aitt }. Hereafter,
we will simplify the action-value function as Q(ht−1,ot ,at ;ϕ) and
policy function as µit (ht−1,ot ;θ it).

3.3 Training
The centralized critic Q(ht−1,ot ,at ;ϕ) is trained using the Bellman
equation as in Q-learning [48]. We minimize the below loss:

L(ϕ) = Eht−1 ,ot [(Q(ht−1,ot ,at ;ϕ) − yt)
2] (3)

where

yt = rt + γQ(ht ,ot+1, µit+1 (ht ,ot+1);ϕ) (4)

The private actor is updated by maximizing the expected total
rewards with respect to the actor’s parameters. If agent Ait is active
at step t , the objective function is:

J (θ it) = Eht−1 ,ot [Q(ht−1,ot ,a;ϕ)|a=µ it (ht−1 ,ot ;θ it)] (5)

3Because a user can be in only one physical scenario at each timestep.

ALGORITHM 1: MA-RDPG
Initialize the parameters θ = {θ1, . . . ,θN } for the N actor

networks and ϕ for the centralized critic network.
Initialized the replay buffer R
for each training step e do

for i = 1 to M do
h0 = initial message, t = 1
while t < T and ot , terminal do

Select the action at = µ
it (ht−1,ot) for the active

agent it
Receive reward rt and the new observation ot+1
Generate the message ht = LSTM(ht−1, [ot ;at])
t = t + 1

end
Store episode {h0,o1,a1, r1,h1,o2, r2,h3,o3, . . . } in R

end
Sample a random minibatch of episodes B from replay

buffer R
foreach episode in B do

for t = T downto 1 do
Update the critic by minimizing the loss:
L(ϕ) = (Q(ht−1,ot ,at ;ϕ) − yt)2, where
yt = rt + γQ(ht ,ot+1, µit+1 (ht ,ot+1);ϕ)

Update the it -th actor by maximizing the critic:
J (θ it) = Q(ht−1,ot ,a;ϕ)|a=µ it (ht−1 ,ot ;θ it)

Update the communication component.
end

end
end

Following the chain rule, the gradients of the actor’s parameters are
given as below:

∇θ it J (θ
it)

≈ Eht−1 .ot [∇θ it Q
it (ht−1,ot ,a;ϕ)|a=µ it (ht−1 ,ot ;θ it)]

= Eht−1 ,ot [∇aQ
it (ht−1,ot ,a;ϕ)|a=µ it (ht−1 ,ot)∇θ it µ

it (ht−1,ot ;θ it)]
(6)

The communication component is trained by minimizing:

L(ψ)

= Eht−1 ,ot [(Q(ht−1,ot ,at ;ϕ) − yt)
2 |ht−1=LSTM (ht−2 ,[ot−1;at−1];ψ)]

− Eht−1 ,ot [Q(ht−1,ot ,at ;ϕ)|ht−1=LSTM (ht−2 ,[ot−1;at−1];ψ)]

(7)
The training process is shown in Algorithm 1. We use a replay

buffer [30] to store the complete trajectories to learn with minibatch
update, rather than online update. At each training step, we sample
an minibatch of episodes and process them in parallel to update the
actor networks and the critic network respectively.

4 APPLICATION
Previous sections present a general multi-agent reinforcement learn-
ing framework that may be applicable to many joint optimization
scenarios. To evaluate the proposed model, we apply it to jointly
optimize the ranking strategies in two search scenarios in Taobao,
which is a real-world E-commerce platform.

Query

&User

Main

Search

Ranking

Strategy

Rank

List

item_1

item_2

…

item_k

Learning

to Rank

Main

Search

Log

Query

&User

In-shop

Search

Ranking

Strategy

Rank

List

item_k

…

item_2

item_1

Learning

to Rank

In-shop

Search

Log

(a) The two search engines are optimized separately.

Main
Search

Ranking
Strategy

Rank
List

item_1

item_2

…

item_k

Query
&User

In-shop
Search

Ranking
Strategy

Rank
List

item_k

…

item_2

item_1

Replay
Buffer

MA-RDPG

Main
Search
Actor

In-shop
Search
Actor

(b) The two systems work collaboratively in MA-RDPG.

Figure 5: Comparison of two search systems that are optimized
separately or collaboratively.

Firstly, we give a brief overview of the online E-commerce plat-
form. Then, we explain the details of how we apply our MA-RDPG
to Taobao.

4.1 Search Scenarios of an E-commerce Platform
An E-commerce platform generally consists of multiple search sce-
narios, each of which has its own ranking strategy. In particular, we
choose two important search scenarios of an E-commerce platform
for this study: the main search and the in-shop search. The two
search types are detailed as follows:

Main search ranks the relevant items when a user issues a query
through the search box in the entrance page of the E-commerce
platform. The main search returns various items from different sub-
domains in the platform. The main search occupies the majority of
the user traffic. In our platform, there are about 40,000 queries of
main search per second. Within one day, there could be about 3.5
billion page views and 1.5 billion clicks from more than 100 million
customers.

In-shop search ranks items in a certain shop when a user browses
products at a shop’s page 4. During the in-shop search, customers
can search either with an input query or without any query. In one
day, more than 50 million customers make shopping via in-shop
search, amounting to 600 million clicks and 1.5 billion page views.

Users constantly navigate cross the two scenarios. When an user
find a dress that she likes in the main search, she may go into the shop

4Some E-commerce systems such as Taobao or JingDong are the same as the real
marketplaces which have many shops. Each shop sales its own products.

site for more similar products. When the user finds that the clothes
in the shop are too limited, the user may go back to the main search
for more products from other shops. Our investigation suggests that
among all user shopping behavior data in Taobao, 25.46% switches
from the main search to the in-shop search and 9.12% switches from
the in-shop search back to the main search.

In existing models [10, 17, 24], different ranking strategies in
different scenarios are independently optimized, and each strategy
maximizes its own objective and ignores those of the other strategies.
Figure 5(a) describes a traditional optimization method for deal-
ing with multiple search scenarios in online platforms. The upper
block in red denotes the main search engine and the lower block in
blue denotes the in-shop search engine. The two search engines are
optimized separately and independently.

4.2 Joint Optimization of Multi-scenario Ranking
We illustrate a solution to jointly optimizing ranking strategies in
the main search and in-shop search in Figure 5(b). Instead of sepa-
rately optimizing the ranking strategies in the two search scenarios,
MA-RDPG employs two agents (actors) to model the two strategies
collaboratively. The main search and in-shop search actors learn the
weights of features in the ranking algorithms for the two scenarios
respectively. The two actors collaborate in two ways: First, they have
the same goal to optimize the overall performance of the system;
Second, they share and broadcast messages through the communica-
tion component such that both of them have access to all historical
information in different scenarios.

To be concrete, we will introduce the key concepts when MA-
RDPG is applied to the scenarios.

Environment. The environment is the online E-commerce plat-
form. Its state changes when the two agents (actors) take actions to
present different ranking items. It offers rewards to the actors which
also take as input the observations from the environment.

Agents. There are two agents: one is the search engine for main
search and the other is that for in-shop search. At each step, one of
the search engines returned a ranked list of products according to
the ranking algorithm (linearly summing the features values with
the feature weights). The two agents work together to maximize the
overall performance, GMV, for instance.

States. As aforementioned, the states are partially observable.
Agents can only receive a local observation which includes: the
attributes of the customer (age, gender, purchasing power, etc.), the
properties of the customer’s clicked items (price, conversion rate,
sales volume, etc.), the query type and the scenario index (main or
in-shop search). A 52-dimension vector is then formed to represent
the observed information. As shown in MA-RDPG, the complete
state vector are concatenation of the local observation vector and
message vector which encodes historical observations and actions.

Actions. The agent needs to provide a ranking list of relevant
items in response to an input query (or sometimes no query). Thus,
the action of the agents is defined as the weight vector for the ranking
features. To rank items, the ranking algorithm computes an inner
product of the feature value vector and the weight vector. Changing
an action means to change the weight vector for the ranking features.

X

U
se

r co
n

te
xt

H
id

d
e
n

 laye
r1

H
id

d
e
n

 laye
r2

Fe
atu

re
 w

e
ig

h
ts

R
an

k
in

g
 fe

aau
re

s

ReLU

(Lo
cal o

b
se

rvatio
n

)
(M

e
ssag

e
)

(A
ctio

n
)

ReLU

Sigmoid

C
lick

p
ro

b
ab

ility

Softmax

w
1

w
2

w
3

f1
f2

f3

Figure 6: Actor network. The actor network in red dashed box
outputs an real-valued action vector (green) for ranking given
the input of local observation (blue) and message(red).

For main search, we set the actor’s action as a 7-dimension real-
valued vector. For in-shop search, the action is a 3-dimension real-
valued vector.

Each agent has its own policy function. The architecture of the
actor network is shown in Figure 6. The actor network is a three-
layer Perceptrons (MLP) with ReLu activation functions for the first
two layer and softmaxt for the output layer. The input to the actor
network is the local observation vector and the message vector. The
output is the weight vector for the ranking features.

Reward. We design the rewards by considering not only purchase
behaviors but also other user behaviors. In this manner, we can make
full use of user feedback on the presented product list. If a purchase
behavior happens, there is a positive reward that equals to the price
of the bought product. If a click happens, there is a positive reward
of 1. If there is no purchase nor click, a negative reward of −1 is
received. If a user leaves the page without buying any product, there
is a negative reward of −5.

Table 1: Examples of Ranking Features

Scenario Feature Name Description

Main
Click An CTR estimation using logistic

Through regression, considering features of
Rate users, items and their interactions

Search Rating Score Average user ratings on a certain item
Shop Popularity Popularity of the item shop

In-shop Latest Collection
Whether an item is the latest

collection or new arrivals of the shop
Search Sales Volume Sales volume of an in-shop item

5 EXPERIMENT
To evaluate the performance of our proposed MA-RDPG model, we
deployed our model on Taobao to jointly optimize the main search
and in-shop search.

5.1 Experiment Setting
Training Process. The flow chart of our model is shown in Figure
5(b). Our training process is based on an online learning system
which consumes unbounded streams of data. Firstly, the system

collects user logs in real time and provides training episodes for
MA-RDPG. Secondly, the episodes are stored in a replay buffer.
Thirdly, gradients are computed to update model parameters using
the episodes sampled from the replay buffer. At last, a new, updated
model is deployed to the online system. The process repeats. Thus,
the online model is changing periodically and dynamically to capture
the dynamics of user behaviors.

Parameter Setting. For each agent, the local observations is a
52-dimensional vector. The dimension of the action vector is 7 and 3
for the main and in-shop search respectively. As the communication
component and critic network will take the action vectors of both
actors as inpu, for convenience, a vector of a normalized length 10
(7+3) with zero-padding is taken as input to the LSTM and critic
networks.

For the communication component, the input is a 52 + 7 + 3 = 62
dimensional vector and the output message is a 10-dimension vector.
The network structure is shown in Figure 4. In the actor network, the
dimension of the input layer is 52 + 7 + 3 = 62. The actor network
was parameterized by a three-layer MLP with 32/32/7 (or 3) neurons
for the first/second/third layer, respectively. The activation functions
are ReLU for the first two layers and softmax for the output layer.
The network structure is shown in Figure 6. The critic network has
two hidden layers with 32 neurons per layer. The ReLU activation
function is also used.

The reward discount factor is γ = 0.9. In our experiments, we
used RMSProp for learning parameters with a learning rate of 10−3
and 10−5 for the actor and critic network respectively. We used a
replay buffer size of 104 and the minibatch size is 100.

5.2 Baseline
The ranking algorithms in our baselines are as follows:

Empirical Weight (EW). This algorithm applies a weighted sum
of the feature values with feature weights where the weights were
empirically adjusted by engineering experts.

Learning to Rank (L2R). This ranking algorithm learns feature
weights by a point-wise learning-to-rank network whose structure is
the same as the actor network shown in Figure 6 but without message
as input. The network is supervised by the user feedback of whether
a click/purchase happens on an item.

The main difference among EW, L2R and MA-RDPG is the way
to generate the feature weights. In MA-RDPG, feature weights are
produced by the actor networks. Some typical ranking features are
listed in Table 1.

On top of the algorithms, we compared MA-RDPG with three
baselines that separately optimized the ranking strategies in the main
search and in-shop search: 1) EW+L2R; 2) L2R+EW; 3) L2R+L2R.
The first algorithm indicates the one used for the main search, and
the second one for the in-shop search.

5.3 Result
5.3.1 Metric. We reported the relative improvement between

the compared model against the model in which EW is deployed
on both scenarios (main and in-shop search), EW+EW. The met-
ric, GMV gap, is defined as (GMV (x)−GMV (y))

GMV (y) , the relative GMV
growth of a model (GMV (x)) compared to the setting of EW+EW
(GMV (y)). To make a fair comparison, all the algorithms run seven

Table 2: GMV gap evaluated on an online E-commerce platform. A+B means algorithm A is deployed for the main search and B for
the in-shop search. The values are the relative growth ratio of GMV compared with the EW+EW setting.

day
EW + L2R L2R + EW L2R + L2R MA-RDPG

main in-shop total main in-shop total main in-shop total main in-shop total
1 0.04% 1.78% 0.58% 5.07% -1.49% 3.04% 5.22% 0.78% 3.84% 5.37% 2.39% 4.45%
2 0.01% 1.98% 0.62% 4.96% -0.86% 3.16% 4.82% 1.02% 3.64% 5.54% 2.53% 4.61%
3 0.08% 2.11% 0.71% 4.82% -1.39% 2.89% 5.02% 0.89% 3.74% 5.29% 2.83% 4.53%
4 0.09% 1.89% 0.64% 5.12% -1.07% 3.20% 5.19% 0.52% 3.74% 5.60% 2.67% 4.69%
5 -0.08% 2.24% 0.64% 4.88% -1.15% 3.01% 4.77% 0.93% 3.58% 5.29% 2.50% 4.43%
6 0.14% 2.23% 0.79% 5.07% -0.94% 3.21% 4.86% 0.82% 3.61% 5.59% 2.37% 4.59%
7 -0.06% 2.12% 0.62% 5.21% -1.32% 3.19% 5.14% 1.16% 3.91% 5.30% 2.69% 4.49%

avg. 0.03% 2.05% 0.66% 5.02% -1.17% 3.09% 5.00% 0.87% 3.72% 5.43% 2.57% 4.54%

Figure 7: Upper/Middle: Learning process of the critic/actor
network respectively. Lower: GMV gap against the EW+EW
baseline in the online experiments.

days in our A/B test system where 3% users are selected into the
test group. The performance is measured in terms of the GMV gap
in both search scenarios in these days. The performance for each
single scenario is also provided as an indicator so that we can study
the correlation between the two scenarios.

5.3.2 Result Analysis. The results are shown in Table 2 and
we made the following observations:

First, our MA-RDPG performs much better than all the baselines
which are equipped with L2R or empirical weights. In particular,
MA-RDPG outperforms L2R+L2R which is a strong model currently
using by Taobao, but L2R+L2R independently optimizes the ranking
strategies in main search and in-shop search. It justifies that the
collaboration between scenarios truly improves the overall GMV.

Second, with MA-RDPG, the GMV of in-shop search is improved
significantly while the main search agent maintains comparable
GMVs. The reason is that the traffic from the main search to the
in-shop search is much more than that from the in-shop search to the
main search (25.46% vs.9.12%). Thus, the in-shop search agent is
benefited more by receiving messages from the main search agent.

Third, the results of L2R+EW further validate our motivations
that the two scenarios should cooperate with each other because
improving GMV in the main search hurts that in the in-shop search.

Figure 8: The change of main and in-shop search actions. Ac-
tions are averaged over the outputs of an actor network within
a training batch.

In the lower sub-figure of Figure 7 we investigated the stability
of MA-RDPG by plotting the mean performance which averages
GMV gaps at the same hour within the seven days. It shows that
MA-RDPG makes stable and continuous improvement.

5.3.3 Action Analysis. As aforementioned, we employed con-
tinuous actions for the agents. We thus evaluated how the actions
change over time, as shown in Figure 8. Since each dimension of an
action vector is real-valued, we reported the average of the action
vectors in a training batch in this experiment.

The upper sub-figure of Figure 8 depicts how the actions of the
main search agent change over time. Action_1 has the largest value
in the main search, corresponding to the feature of Click-Through-
Rate (see Table 1). This indicates that Click-Through-Rate is the
most important feature, in line with the fact that CTR is known as a
very important factor in most ranking scenarios. Action_6 is second
largest, and it represents the weight of Shop Popularity (but not
Item Popularity). However, this feature used to be a weak one in
L2R, but plays a much more important role in our experiment than
expected. With this feature, the main search can direct more traffic
to the in-shop search by providing products from popular shops.

dress dress

Figure 9: Search result comparison. In each sub-figure, the left
is by MA-RDPG and the right by L2R+L2R.

The change of the actions of the in-shop search agent is illustrated
in the lower figure of Figure 8. Action_0 is the most influential
feature, which represents the weight of Sales Volume (see Table 1).
More popular items seem to be bought more.

Though the values of the actions varied dramatically at the early
stage, they converged to stable values after about 15 hours’ training.
This is accordant with the loss and critic value curves as shown
in Figure 7 which demonstrates that the critic and actor networks
converged finally.

5.4 Case Study
In this subsection we further analyzed some typical cases on how
main search and in-shop search cooperate by MA-RDPG. Due to the
high variability of the online environment, we only focused on some
typical situations and shown the differences of the ranking items
between MA-RDPG and L2R+L2R.

The case illustrates how the main search helps the in-shop search,
thereby targeting more future overall rewards. We simulated a scene
from user log like this: a young woman with strong purchase in-
tent clicked some items of skirt which are expensive and have low
conversion rates, then she queried “dress” in the main search. The
results returned by the two models are shown in Figure 9. Obviously,
the results of MA-RDPG are with lower sales (small sold numbers)
but with more expensive prices from more branded shops, which
makes customers enter the shops with a high probability. By contrast
to L2R+L2R, the main search with MA-RDPG ranks items from a
global perspective in that it does not only consider its own immedi-
ate reward but also the future potential purchase during the in-shop
search.

6 RELATED WORK
Ranking is a fundamental problem in many applications such as
searching, recommendation, and advertising systems. A good rank-
ing strategy can significantly improve user experience and the per-
formance of the applications.

Learning to rank (L2R) is one typical genre of popular ranking
algorithms [27, 33], and has been widely applied to E-commerce

search [23], web search [1, 34], recommendation system [39, 40].
The diversity of ranking results is a common issue studied by the
community, as addressed by maximal marginal relevance [7], topic
representation [19], and reinforcement learning [49]. The efficiency
issue is another important problem for large online platforms, which
can be addressed by feature selection [14, 45, 47] , cascade learn-
ing [32, 44, 46], and many other techniques.

Online large platforms generally have multiple ranking scenar-
ios in multiple sub-domains, however, joint optimization for multi-
scenario ranking is rather unexplored. We cast the problem as a fully
cooperative, partially observable multi-agent reinforcement learn-
ing problem. Multi-agent reinforcement learning problem can be
grouped into three categories [5]: fully cooperative, full competitive,
and mixed strategies. Our task is formulated as a fully cooperative
problem, which has a long history in multi-agent learning [9, 26, 36].
Due to the increased complexity of the environment, recent research
efforts are paid to developing deep reinforcement learning (DRL)
models. [16] combined three training schemes with DRL models
to make agents collaborate with each other. Counterfactual Multi-
Agent Policy Gradients [13] uses a centralised critic to estimate
a global Q-function. In addition, it uses a counterfactual baseline
that marginalises out the action of a single agent, to address the
challenges of multi-agent credit assignment. [41] introduced a novel
additive value-decomposition approach over individual agents in-
stead of learning a shared total reward. However, agents in these
three models cannot communicate with each other. Thus, the com-
munication protocols [12] were proposed to make agents collaborate
more easily. The base model of [12] is deep Q-Learning, which is
not suitable for continuous action space.

Therefore, we propose our own Multi-Agent Recurrent Determin-
istic Policy Gradient (MA-RDPG) model. MA-RDPG is formulated
within a multi-agent actor-critic framework and is suitable for both
discrete and continuous actions.

7 CONCLUSION
In this paper, we present a multi-agent reinforcement learning model,
MA-RDPG which employs continuous actions, deterministic poli-
cies, and recurrent message encodings. The model can optimize rank-
ing strategies collaboratively for multi-scenario ranking problems.
The model consists of a centralized critic, private actors (agents),
and a communication component. Actors (agents) work collabora-
tively in two manners: sharing the same action-value function (the
critic) that estimates the future overall rewards, and sending com-
munication messages that encode all historical contexts. The model
demonstrates advantages over baselines through online evaluation
on an E-commerce platform.

The proposed model is a general framework which may be appli-
cable to other joint ranking/optimization problems. We leave this as
future work.

8 ACKNOWLEDGEMENT
This work was partly supported by the National Science Foundation
of China under grant No.61272227/61332007.

REFERENCES
[1] Leif Azzopardi and Guido Zuccon. 2016. Advances in formal models of search and

search behaviour. In Proceedings of the 2016 ACM on International Conference
on the Theory of Information Retrieval. ACM, 1–4.

[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. ACM, 89–96.

[3] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In NIPS. 193–200.

[4] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
And Cybernetics-Part C: Applications and Reviews, 38 (2), 2008 (2008).

[5] Lucian Busoniu, Robert Babuška, and Bart De Schutter. 2010. Multi-agent re-
inforcement learning: An overview. Innovations in multi-agent systems and
applications-1 310 (2010), 183–221.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
rank: from pairwise approach to listwise approach. In ICML. ACM, 129–136.

[7] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In the 21st ACM
SIGIR. ACM, 335–336.

[8] Jack Clark. Retrieved 28 October2015. Google Turning Its Lucrative Web Search
Over to AI Machines. Bloomberg Business (Retrieved 28 October2015).

[9] Caroline Claus and Craig Boutilier. 1998. The dynamics of reinforcement learning
in cooperative multiagent systems. AAAI/IAAI 1998 (1998), 746–752.

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In ACM Conference on Recommender Systems.
191–198.

[11] Carl Davidson and Raymond Deneckere. 1986. Long-run competition in capacity,
short-run competition in price, and the Cournot model. The Rand Journal of
Economics (1986), 404–415.

[12] Jakob Foerster, Yannis M Assael, Nando de Freitas, and Shimon Whiteson. 2016.
Learning to communicate with deep multi-agent reinforcement learning. In Ad-
vances in Neural Information Processing Systems. 2137–2145.

[13] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2017. Counterfactual Multi-Agent Policy Gradients. arXiv
preprint arXiv:1705.08926 (2017).

[14] Xiubo Geng, Tie-Yan Liu, Tao Qin, and Hang Li. 2007. Feature selection for
ranking. In Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 407–414.

[15] Fredric C Gey. 1994. Inferring probability of relevance using the method of
logistic regression. In Proceedings of the 17th annual international ACM SIGIR
conference on Research and development in information retrieval. Springer-Verlag
New York, Inc., 222–231.

[16] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
multiagent control using deep reinforcement learning. In Proceedings of the
Adaptive and Learning Agents workshop (at AAMAS 2017).

[17] Saurabh Gupta, Sayan Pathak, and Bivas Mitra. 2015. Complementary Usage of
Tips and Reviews for Location Recommendation in Yelp. Springer International
Publishing. 1003–1003 pages.

[18] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent q-learning for partially
observable mdps. (2015).

[19] Jiyin He, Vera Hollink, and Arjen de Vries. 2012. Combining implicit and explicit
topic representations for result diversification. In the 35th ACM SIGIR. ACM,
851–860.

[20] Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval
Tassa. 2015. Learning continuous control policies by stochastic value gradients.
In NIPS. 2944–2952.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[22] Junling Hu, Michael P Wellman, et al. 1998. Multiagent reinforcement learning:
theoretical framework and an algorithm.. In ICML, Vol. 98. 242–250.

[23] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017.
On Application of Learning to Rank for E-Commerce Search. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 475–484.

[24] Krishnaram Kenthapadi, Krishnaram Kenthapadi, and Krishnaram Kenthapadi.
2017. LiJAR: A System for Job Application Redistribution towards Efficient
Career Marketplace. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1397–1406.

[25] Vijay R Konda and John N Tsitsiklis. 2000. Actor-critic algorithms. In Advances
in neural information processing systems. 1008–1014.

[26] Martin Lauer and Martin Riedmiller. 2000. An algorithm for distributed rein-
forcement learning in cooperative multi-agent systems. In In Proceedings of the
Seventeenth International Conference on Machine Learning. Citeseer.

[27] Hang Li. 2014. Learning to rank for information retrieval and natural language
processing. Synthesis Lectures on Human Language Technologies 7, 3 (2014),
1–121.

[28] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline
evaluation of contextual-bandit-based news article recommendation algorithms. In
Proceedings of the fourth ACM international conference on Web search and data
mining. ACM, 297–306.

[29] Ping Li, Qiang Wu, and Christopher J Burges. 2008. Mcrank: Learning to rank
using multiple classification and gradient boosting. In Advances in neural infor-
mation processing systems. 897–904.

[30] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[31] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-
forcement learning. In Proceedings of the eleventh international conference on
machine learning, Vol. 157. 157–163.

[32] Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade Ranking for
Operational E-commerce Search. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017. 1557–1565.

[33] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[34] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. 2013. The whens and
hows of learning to rank for web search. Information Retrieval 16, 5 (2013),
584–628.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[36] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of
the art. Autonomous agents and multi-agent systems 11, 3 (2005), 387–434.

[37] Tao Qin, Xu-Dong Zhang, De-Sheng Wang, Tie-Yan Liu, Wei Lai, and Hang Li.
2007. Ranking with multiple hyperplanes. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 279–286.

[38] Juan C Santamaría, Richard S Sutton, and Ashwin Ram. 1997. Experiments
with reinforcement learning in problems with continuous state and action spaces.
Adaptive behavior 6, 2 (1997), 163–217.

[39] Bichen Shi, Georgiana Ifrim, and Neil Hurley. 2016. Learning-to-rank for real-
time high-precision hashtag recommendation for streaming news. In Proceedings
of the 25th International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 1191–1202.

[40] Yue Shi, Martha Larson, and Alan Hanjalic. 2010. List-wise learning to rank with
matrix factorization for collaborative filtering. In Proceedings of the fourth ACM
conference on Recommender systems. ACM, 269–272.

[41] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-Decomposition Networks For Cooperative Multi-Agent
Learning. arXiv preprint arXiv:1706.05296 (2017).

[42] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[43] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
2000. Policy gradient methods for reinforcement learning with function approxi-
mation. In NIPS. 1057–1063.

[44] Paul Viola and Michael Jones. 2001. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,
Vol. 1. IEEE, I–I.

[45] Lidan Wang, Jimmy Lin, and Donald Metzler. 2010. Learning to efficiently rank.
In Proceedings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval. ACM, 138–145.

[46] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model
for efficient ranked retrieval. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. ACM, 105–
114.

[47] Lidan Wang, Donald Metzler, and Jimmy Lin. 2010. Ranking under temporal con-
straints. In Proceedings of the 19th ACM international conference on Information
and knowledge management. ACM, 79–88.

[48] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[49] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2017.
Adapting Markov Decision Process for Search Result Diversification. In Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017.
535–544.

[50] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 323–
332.

	Abstract
	1 Introduction
	2 Background
	2.1 Ranking Strategy
	2.2 Reinforcement Learning
	2.3 Multi-Agent Reinforcement Learning

	3 Method
	3.1 Problem Description
	3.2 Model
	3.3 Training

	4 Application
	4.1 Search Scenarios of an E-commerce Platform
	4.2 Joint Optimization of Multi-scenario Ranking

	5 Experiment
	5.1 Experiment Setting
	5.2 Baseline
	5.3 Result
	5.4 Case Study

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

