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Abstract

Commonsense knowledge is vital to many natu-
ral language processing tasks. In this paper, we
present a novel open-domain conversation gener-
ation model to demonstrate how large-scale com-
monsense knowledge can facilitate language under-
standing and generation. Given a user post, the
model retrieves relevant knowledge graphs from a
knowledge base and then encodes the graphs with a
static graph attention mechanism, which augments
the semantic information of the post and thus sup-
ports better understanding of the post. Then, dur-
ing word generation, the model attentively reads
the retrieved knowledge graphs and the knowledge
triples within each graph to facilitate better gen-
eration through a dynamic graph attention mech-
anism. This is the first attempt that uses large-scale
commonsense knowledge in conversation genera-
tion. Furthermore, unlike existing models that use
knowledge triples (entities) separately and indepen-
dently, our model treats each knowledge graph as a
whole, which encodes more structured, connected
semantic information in the graphs. Experiments
show that the proposed model can generate more
appropriate and informative responses than state-
of-the-art baselines.

1 Introduction
Semantic understanding, particularly when facilitated by
commonsense knowledge or world facts, is essential to
many natural language processing tasks [Wang et al., 2017;
Lin et al., 2017], and undoubtedly, it is a key factor to the
success of dialogue or conversational systems, as conversa-
tional interaction is a semantic activity [Eggins and Slade,
2005]. In open-domain conversational systems, common-
sense knowledge is important for establishing effective inter-
actions, since socially shared commonsense knowledge is the
set of background information people intended to know and
use during conversation [Minsky, 1991; Marková et al., 2007;
Speer and Havasi, 2012; Souto, 2015].
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Recently, a variety of neural models has been proposed
for conversation generation [Ritter et al., 2011; Shang et
al., 2015]. However, these models tend to generate generic
responses, which are unable to respond appropriately and
informatively in most cases, because it is challenging to
learn semantic interactions merely from conversational data
[Ghazvininejad et al., 2017] without deep understanding of
user input, and the background knowledge and the context of
conversation. A model can understand conversations better
and thus respond more properly if it can access and make full
use of large-scale commonsense knowledge. For instance, to
understand a post-response pair “Don’t order drinks at the
restaurant , ask for free water” and “Not in Germany. Water
cost more than beer. Bring you own water bottle”, we need
commonsense knowledge such as (water, AtLocation, restau-
rant), (free, RelatedTo, cost), etc.

Some prior studies have been conducted to introduce exter-
nal knowledge in conversation generation [Han et al., 2015;
Ghazvininejad et al., 2017; Zhu et al., 2017]. The knowledge
used in these models is either unstructured texts [Ghazvinine-
jad et al., 2017] or domain-specific knowledge triples [Zhu
et al., 2017]. Therefore, such models face with two issues
when they are applied to open-domain, open-topic conver-
sation generation. First, they are highly dependent on the
quality of unstructured texts or limited by the small-scale,
domain-specific knowledge. Second, they usually make use
of knowledge triples (entities) separately and independently,
instead of treating knowledge triples as a whole in a graph.
Thus, they are unable to represent the semantics of a graph
via linked entities and relations.

To address the two issues, we propose a commonsense
knowledge aware conversational model (CCM) to facilitate
language understanding and generation in open-domain con-
versational systems. We use a large-scale commonsense
knowledge [Speer and Havasi, 2012] to help understand the
background information of a given post, and to facilitate re-
sponse generation with such knowledge. The model retrieves
a few knowledge graphs for each post and then use the graphs
to respond more informatively and appropriately, as shown
in Figure 1. To fully leverage the retrieved graphs in con-
versation generation, two novel graph attention mechanisms
are designed. A static graph attention mechanism encodes
the retrieved graphs for a post to augment the semantic rep-
resentation of the post, which can help understand the post.



Moonlight lacks the ultraviolet rays of sunlight. I don’t think that’s 
a lack of uv.

Moonlight lacks the ultraviolet rays of sunlight. I’m not sure what 
you’re saying.
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Figure 1: (Better viewed in color) Two response examples by our
model (the first line) and Seq2Seq (second) with/without consider-
ing commonsense knowledge, respectively.

A dynamic graph attention mechanism attentively reads the
knowledge graphs and the triples in each graph, and then uses
the semantic information from the graphs and triples for bet-
ter response generation.

In summary, this paper makes the following contributions:

• This work is the first attempt that uses large-scale com-
monsense knowledge in neural conversation generation.
Supported by such knowledge, our model can under-
stand the dialogue better and thus respond more appro-
priately and informatively.

• Instead of treating knowledge triples (or entities) sep-
arately and independently, we devise static and dy-
namic graph attention mechanisms to treat the knowl-
edge triples as a graph, from which we can better in-
terpret the semantics of an entity from its neighboring
entities and relations.

2 Related Work
Open-domain Conversational Models
Recently, sequence-to-sequence models [Sutskever et al.,
2014; Bahdanau et al., 2014] have been successfully applied
to large-scale conversation generation, including neural re-
sponding machine [Shang et al., 2015], hierarchical recur-
rent models [Serban et al., 2015], and many others [Sor-
doni et al., 2015]. These models developed various tech-
niques to improve the content quality of generated responses,
including diversity promotion [Li et al., 2016; Shao et al.,
2017], considering additional information [Xing et al., 2017;
Mou et al., 2016], and handling unknown words [Gu et al.,
2016]. However, generic or meaningless responses are still
commonly seen in these models due to the inability of good
understanding of the user input or other context.
Unstructured Texts Enhanced Conversational Models
Several studies incorporated unstructured texts as external
knowledge into conversation generation [Ghazvininejad et

al., 2017; Long et al., 2017]. [Ghazvininejad et al., 2017]
used memory network which stores unstructured texts to im-
prove conversation generation. [Long et al., 2017] applied a
convolutional neural network to extract knowledge from un-
structured texts to generate multi-turn conversations. How-
ever, these models largely depend on the quality of unstruc-
tured texts, which may introduce noise in conversation gener-
ation if the texts are irrelevant.
Structured Knowledge Enhanced Conversational Models
There exist some models that introduced high-quality struc-
tured knowledge for conversation generation [Han et al.,
2015; Zhu et al., 2017; Xu et al., 2017]. [Xu et al., 2017] in-
corporated a structured domain-specific knowledge base into
conversation generation with a recall-gate mechanism. [Zhu
et al., 2017] presented an end-to-end knowledge grounded
conversational model using a copy network [Gu et al., 2016].
However, these studies are somehow limited by the small
domain-specific knowledge base, making them not appli-
cable for open-domain, open-topic conversation generation.
By contrast, our model applies a large-scale commonsense
knowledge base to facilitate both the understanding of a post
and the generation of a response, with novel graph attention
mechanisms.

3 Commonsense Conversational Model
3.1 Background: Encoder-decoder Framework
First of all, we introduce a general encoder-decoder frame-
work which is based on sequence-to-sequence (seq2seq)
learning [Sutskever et al., 2014]. The encoder represents a
post sequence X = x1x2 · · ·xn with hidden representations
H = h1h2 · · ·hn

1 , which is briefly defined as below:

ht = GRU(ht−1, e(xt)), (1)

where e(xt) is the embedding of the word xt, and GRU is
gated recurrent unit [Cho et al., 2014].

The decoder takes as input a context vector ct and the em-
bedding of a previously decoded word e(yt−1), and updates
its state st using another GRU:

st = GRU(st−1, [ct−1; e(yt−1)]), (2)

where [ct−1; e(yt−1)] is the concatenation of the two vectors,
serving as input to the GRU network. The context vector ct−1
is an attentive read of H , which is a weighted sum of the
encoder’s hidden states as ct−1 =

∑n
k=1 α

t−1
k hk, and αt−1

k
measures the relevance between state st−1 and hidden state
hk. Refer to [Bahdanau et al., 2014] for more details.

The decoder generates a token by sampling from the output
probability distribution which can be computed as follows:

yt ∼ ot = P (yt | y<t, ct)

= softmax(Wost). (3)

where y<t = y1y2 · · · yt−1, the words already generated.

1Throughout the paper, a normal letter denotes a discrete symbol
while a bolded letter denotes a vector.



3.2 Task Definition and Overview
Our problem is formulated as follows: Given a post X =
x1x2 · · ·xn and some commonsense knowledge graphs G =
{g1, g2, · · · , gNG

}, the goal is to generate a proper response
Y = y1y2 · · · ym. Essentially, the model estimates the prob-
ability: P (Y |X,G) =

∏m
t=1 P (yt|y<t, X,G). The graphs

are retrieved from a knowledge base using the words in a
post as queries, and each word corresponds to a graph in G 2.
Each graph consists of a set of triples gi = {τ1, τ2, · · · , τNgi

}
and each triple (head entity, relation, tail entity) is denoted as
τ = (h, r, t).

We adopt TransE [Bordes et al., 2013] to represent the en-
tities and relations in the knowledge base. In order to bridge
the representation gap between knowledge base and unstruc-
tured conversational texts, we adopt a MLP for the purpose:
a knowledge triple τ is represented by k = (h, r, t) =
MLP(TransE(h, r, t)), where h/r/t are the transformed
TransE embeddings for h/r/t respectively.
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Figure 2: Overview of CCM.

The overview of our commonsense conversational model
(CCM) is presented in Figure 2. The knowledge interpreter
takes as input a post X = x1x2 · · ·xn and retrieved knowl-
edge graphs G = {g1, g2, · · · , gNG

} to obtain knowledge-
aware representations at each word position, by concatenating
a word vector and its corresponding knowledge graph vector.
A knowledge graph vector represents a knowledge graph for
the corresponding word in X through a static graph attention
mechanism. The knowledge aware generator generates a re-
sponse Y = y1y2 · · · ym with our dynamic graph attention
mechanism. At each decoding position, it attentively reads
the retrieved graphs and the entities in each graph, and then
generates a generic word in the vocabulary or an entity in the

2For a word without any match, there is a special graph denoted
as Not A Fact.

knowledge graphs. The entity is selected by attending on the
graphs and the triples within each graph.

3.3 Knowledge Interpreter
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Figure 3: Knowledge interpreter concatenates a word vector and the
graph vector of the corresponding retrieved graph. In this example,
word rays (also key entity) corresponds to the first graph, and sun-
light to the second one. Each graph is represented by a graph vector.
A key entity is an entity which occurs in the post.

The knowledge interpreter is designed to facilitate the un-
derstanding of a post. It augments the semantics of a word
by including the corresponding graph vector for the word,
as shown in Figure 3. The knowledge interpreter uses each
word xt in a post as the key entity to retrieve a graph gi =
{τ1, τ2, · · · , τNgi

} (the yellow parts) from the entire com-
monsense knowledge base. Each retrieved graph consists
of a key entity (the red dots), its neighboring entities (the
blue dots) and relations between entities. For common words
(e.g., of) which match no entity in the commonsense knowl-
edge graph, a knowledge graph that contains a special symbol
Not A Fact (the grey dots) is used. Then, the knowledge in-
terpreter computes the graph vector gi of the retrieved graph
using the static graph attention mechanism. After concatenat-
ing the word vector w(xt) and the knowledge graph vector
gi, the concatenated vector e(xt) = [w(xt); gi] is obtained
and fed to the GRU cell of the encoder (see Eq. 1).

Static Graph Attention

The static graph attention mechanism is designed to gener-
ate a representation for a retrieved knowledge graph, inspired
by [Velickovic et al., 2017]. The major difference to [Velick-
ovic et al., 2017] lies in that our graph attention encodes more
structured semantic information by considering not only all
nodes in a graph but also relations between nodes.

The static graph attention generates a static representation
for a graph, which will be used to augment the semantics of a
word in a post.

Formally, the static graph attention mecha-
nism takes as input the knowledge triple vectors
K(gi) = {k1,k2, · · · ,kNgi

} in the retrieved knowledge
graph gi, to produce a graph vector gi as follows:



gi =

Ngi∑
n=1

αs
n[hn; tn], (4)

αs
n =

exp(βs
n)∑Ngi

j=1 exp(β
s
j )
, (5)

βs
n = (Wrrn)

>tanh(Whhn +Wttn), (6)

where (hn, rn, tn) = kn, Wh,Wr,Wt are weight matri-
ces for head entities, relations, and tail entities, respectively.
The attention weight measures the association of a relation rn
to a head entity hn and a tail entity tn.

Essentially, a graph vector gi is a weighted sum of the head
and tail vectors [hn; tn] of the triples contained in the graph.

3.4 Knowledge Aware Generator
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Figure 4: Knowledge aware generator dynamically attends on the
graphs (the pink graph is mostly attended) . It then attentively reads
the triples in each graph to estimate the probability of selecting a
triple, where the triple’s neighboring entity (purple dots/words) is
used for word generation.

The knowledge aware generator is designed to generate a
response through making full use of the retrieved knowledge
graphs, as shown in Figure 4. The knowledge aware genera-
tor plays two roles: 1) attentively reading the retrieved graphs
to obtain a graph-aware context vector, and using the vector
to update the decoder’s state; 2) adaptively choosing a generic
word or an entity from the retrieved graphs for word genera-
tion.Formally, the decoder updates its state as follows:

st+1 = GRU(st, [ct; c
g
t ; c

k
t ; e(yt)]), (7)

e(yt) = [w(yt);kj ], (8)

where e(yt) is the concatenation of the word vector w(yt)
and the previous knowledge triple vector kj from which the
previous word (yt) is selected,

ct is the context vector as used in Eq. 2, cgt
and ckt are context vectors attended on knowledge graph
vectors {g1, g2, · · · , gNG

} and knowledge triple vectors
{K(g1),K(g2), · · · ,K(gNG

)} respectively.

Dynamic Graph Attention
The dynamic graph attention mechanism is a hierarchical,
top-down process. It first attentively reads all the knowledge

graphs and then attentively reads all the triples in each graph
for final word generation. Given the decoder state st, it first
attends on the knowledge graph vectors {g1, g2, · · · , gNG

}
to compute the probability of using of each graph gi, which
is defined as below:

cgt =

NG∑
i=1

αg
tigi, (9)

αg
ti =

exp(βg
ti)∑NG

j=1 exp(β
g
tj)
, (10)

βg
ti = V >b tanh(Wbst +Ubgi), (11)

where Vb/Wb/Ub are parameters, and αg
ti is the probability

of choosing knowledge graph gi at step t. The graph context
vector cgt is a weighted sum of the graph vectors, and the
weight measures the association between the decoder’s state
st and a graph vector gi.

The model then attends on the knowledge triple vectors
K(gi) = {k1,k2, · · · ,kNgi

} within each graph gi to calcu-
late the probability of selecting a triple for word generation,
formally as follows:

ckt =

NG∑
i=1

Ngi∑
j=1

αg
tiα

k
tjkj , (12)

αk
tj =

exp(βk
tj)∑Ngi

n=1 exp(β
k
tn)

, (13)

βk
tj = k>j Wcst, (14)

where βk
tj can be viewed as the similarity between each

knowledge triple vector kj and the decoder state st, αk
tj is

the probability of choosing triple τj from all triples in graph
gi at step t.

Finally, the knowledge aware generator selects a generic
word or an entity word 3 with the following distributions:

at = [st; ct; c
g
t ; c

k
t ], (15)

γt = sigmoid(Vo
>at), (16)

Pc(yt = wc) = softmax(Woat), (17)

Pe(yt = we) = αg
tiα

k
tj , (18)

yt ∼ ot = P (yt) =

[
(1− γt)Pg(yt = wc)

γtPe(yt = we)

]
, (19)

where γt ∈ [0, 1] is a scalar to balance the choice between an
entity word we and a generic word wc, Pc/Pe is the distribu-
tion over generic/entity words respectively. The final distri-
bution P (yt) is a concatenation of two distributions.

3.5 Loss Function
The loss function is cross entropy between the predicted to-
ken distribution ot and the reference distribution pt in the

3Entity words are taken from the neighboring entities of the
knowledge triples.



training corpus. Additionally, we apply supervised signals on
the knowledge aware generator layer to teacher-force the se-
lection of an entity or a generic word. The loss on one sample
< X,Y > (X = x1x2 · · ·xn, Y = y1y2 · · · ym) is defined
as:

L(θ) = −
m∑
t=1

ptlog(ot)−
m∑
t=1

(qtlog(γt)+(1−qt)log(1−γt)),

(20)
where γt is the probability of selecting an entity word or a
generic word, and qt ∈ {0, 1} is the true choice of an entity
word or a generic word in Y . The second term is used to su-
pervise the probability of selecting an entity word or a generic
word.

4 Experiments
4.1 Dataset
Commonsense Knowledge Base
ConceptNet4 is used as the commonsense knowledge base. It
contains not only world facts such as “Paris is the capital of
France” that are constantly true, but also informal relations
between common concepts that are part of daily knowledge
such as “A dog is a pet”. This feature is desirable in our exper-
iments, because the ability to recognize the informal relations
between common concepts is necessary in the open-domain
conversation setting. For simplicity, we removed triples con-
taining multi-word entities, and 120,850 triples were retained
with 21,471 entities and 44 relations.

Commonsense Conversation Dataset
We adopted 10M reddit single-round dialogs from the site5.
Since we target at using commonsense knowledge to facili-
tate language understanding and generation, we filtered the
original corpus with the knowledge triples. If a post-response
pair can not be connected by any triple (that is, one entity ap-
pears in the post and the other in the response), the pair will
be removed. The statistics can be seen in Table 1.

We randomly sampled 10,000 pairs for validation. To test
how commonsense knowledge can help understand common
or rare concepts in a post, we constructed four test sets: high-
frequency pairs in which each post has all top 25% frequent
words, medium-frequency pairs where each post contains at
least one word whose frequency is within the range of 25%-
75%, low-frequency pairs within the range of 75%-100%,
and OOV pairs where each post contains out-of-vocabulary
words. Each test set has 5,000 pairs randomly sampled from
the dataset6.

4.2 Implementation Details
Our model was implemented with Tensorflow7. The encoder
and decoder have 2-layer GRU structures with 512 hidden

4https://conceptnet.io
5https://www.reddit.com/r/datasets/

comments/3bxlg7/i_have_every_publicly_
available_reddit_comment/

6Our data are available at: http://coai.cs.tsinghua.
edu.cn/hml/dataset/#commonsense

7https://github.com/tensorflow/tensorflow

Conversational Pairs Commonsense KB
Training 3,384,185 Entity 21,471

Validation 10,000 Relation 44
Test 20,000 Triple 120,850

Table 1: Statistics of the dataset and the knowledge base.

cells for each layer and they do not share parameters. The
word embedding size is set to 300. The vocabulary size is
limited to 30,000. We used TransE [Bordes et al., 2013] to
obtain entity and relation representations. The embedding
size of entities and relations is set to 100.

We used the Adam optimizer with a mini-batch size of 100.
The learning rate is 0.0001. The models were ran at most 20
epoches, and the training stage of each model took about a
week on a Titan X GPU machine. Our code is available at:
https://github.com/tuxchow/ccm.

4.3 Baselines
We chose several suitable baselines:
• A seq2seq model (Seq2Seq) [Sutskever et al., 2014],

which is widely used in open-domain conversational
systems.
• A knowledge-grounded model (MemNet) adapted from

[Ghazvininejad et al., 2017], where the memory units
store TransE embeddings of knowledge triples.
• A copy network (CopyNet) model [Zhu et al., 2017],

which copies a word from knowledge triples or gener-
ates a word from the vocabulary.

4.4 Automatic Evaluation
Metrics: We adopted perplexity [Serban et al., 2015] to eval-
uate the model at the content level (whether the content is
grammatical and relevant in topic). We also calculated the
number of entities per response to measure the model’s abil-
ity to select the concepts from the commonsense knowledge
base in generation. This metric is denoted by entity score.
Results: As shown in Table 2, CCM obtains the lowest per-
plexity on all the test sets, indicating that CCM can under-
stand users’ posts better and generate more grammatical re-
sponses. Moreover, CCM selects the most entities from the
commonsense knowledge among the models during genera-
tion, demonstrating that commonsense knowledge can truly
facilitate response generation.

More interestingly, commonsense knowledge is more fre-
quently used by CCM in low-frequency posts than in high-
frequency ones (entity score: 1.196 vs. 1.156 ). This is in line
with our intuition that rare concepts need more background
knowledge to understand and respond. For the perplexity, the
score for high-frequency posts is lower than low-frequency
ones (35.36 vs. 40.67) since the probabilities for the common
words can be more sufficiently trained.

4.5 Manual Evaluation
We resorted to a crowdsourcing service, Amazon Mechanical
Turk, for manual annotation. 400 posts were randomly sam-
pled for manual annotation. We conducted pair-wise compar-
ison between the response generated by CCM and the one by



Model Overall High Freq. Medium Freq. Low Freq. OOV
ppx. ent. ppx. ent. ppx. ent. ppx. ent. ppx. ent.

Seq2Seq 47.02 0.717 42.41 0.713 47.25 0.740 48.61 0.721 49.96 0.669
MemNet 46.85 0.761 41.93 0.764 47.32 0.788 48.86 0.760 49.52 0.706
CopyNet 40.27 0.96 36.26 0.91 40.99 0.97 42.09 0.96 42.24 0.96
CCM 39.18 1.180 35.36 1.156 39.64 1.191 40.67 1.196 40.87 1.162

Table 2: Automatic evaluation with perplexity (ppx.), and entity score (ent.).

Model Overall High Freq. Medium Freq. Low Freq. OOV
app. inf. app. inf. app. inf. app. inf. app. inf.

CCM vs. Seq2Seq 0.616 0.662 0.605 0.656 0.549 0.624 0.636 0.650 0.673 0.716
CCM vs. MemNet 0.602 0.647 0.593 0.656 0.566 0.640 0.622 0.635 0.626 0.657
CCM vs. CopyNet 0.600 0.640 0.606 0.669 0.586 0.619 0.610 0.633 0.596 0.640

Table 3: Manual evaluation with appropriateness (app.), and informativeness (inf.). The score is the percentage that CCM wins its competitor
after removing “Tie” pairs. CCM is significantly better (sign test, p-value < 0.005 ) than all the baselines on all the test sets.

a baseline for the same post. In total, there are 1,200 pairs
since we have three baselines. For each response pair, seven
judges were hired to give a preference between the two re-
sponses, in terms of the following two metrics. Tie was al-
lowed. Notice that system identifiers were masked during an-
notation.
Metrics: We defined two metrics: appropriateness at the
content level (whether the response is appropriate in gram-
mar, topic, and logic); and informativeness at the knowledge
level (whether the response provides new information and
knowledge in addition to the post).
Annotation Statistics: We calculated the agreements to mea-
sure inter-rater consistency. For appropriateness, the percent-
age of the pairs that at least 4 judges gave the same label (4/7
agreement) amounts to 96.3%, and the percentage for at least
5/7 agreement is 60.2%. For informativeness, the percentage
for at least 4/7 agreement is 90.4% and that for at least 5/7
agreement is 55.1%.
Results: The results are shown in Table 3. The score is the
percentage that CCM wins a baseline after removing “Tie”
pairs. CCM outperforms all the baselines significantly in
terms of both metrics (sign test, p-value < 0.005) on all the
test sets. Furthermore, CCM has about 60% chances to win
the strongest baseline, CopyNet, which makes use of knowl-
edge triples (entities) separately and independently. This
demonstrates the effectiveness of our graph attention mech-
anisms.

Noticeably, the probabilities that CCM wins Seq2Seq on
the OOV dataset are remarkably higher than those on the
high-frequency dataset (0.673 vs. 0.605 in appropriateness,
and 0.716 vs. 0.656 in informativeness). This further indi-
cates that commonsense knowledge is more useful in under-
standing rare concepts in post since Seq2Seq has no ability to
use such knowledge. For MemNet and CopyNet, we did not
observe such differences because the two baselines have the
ability of using knowledge more or less.

4.6 Case Study
A sample conversation is shown in Table 4. The red-colored
word “breakable” in the post is an entity word in the knowl-

Post Why are you so breakable?

Knowledge
(glass, RelatedTo, breakable),
(brittle, RelatedTo, breakable),
(rule, RelatedTo, breakable)

Seq2Seq I’m not a OOV , I’m just a OOV.
MemNet I’m not OOV. I’m just a really nice person.
CopyNet I’m not. I’m just a lurker.
CCM Because I’m a brittle man .

Table 4: Sample responses generated by all the models.

edge base as well as an out-of-vocabulary word for all the
models. Without the access to commonsense knowledge, the
Seq2Seq model is unable to understand the post because of
the out-of-vocabulary word, “breakable”, thereby generating
OOV words. MemNet can generate some meaningful words
as it reads the triple embeddings in its memory, but still out-
puts OOV. CopyNet can read and copy words from knowl-
edge triples. However, CopyNet generated fewer entity words
than ours (see Table 2), as it only deals with separate knowl-
edge triples. Instead, CCM treats the knowledge graph as a
whole and encodes more structured, connected information
via linked entities and relations. It thus generates more rea-
sonable responses through better use of knowledge. This sim-
ple example shows that CCM can generate more appropriate
and informative responses than the baselines.

5 Conclusion and Future Work

In this paper, we present a commonsense knowledge aware
conversational model (CCM) to demonstrate how common-
sense knowledge can facilitate language understanding and
generation in open-domain conversational systems. Auto-
matic and manual evaluation show that CCM can generate
more appropriate and informative responses than state-of-the-
art baselines.

As future work, our graph attention mechanisms may in-
spire other tasks to use commonsense knowledge.
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