
Densely Connected CNN with Multi-scale Feature Attention for Text Classification
Shiyao Wang1, Minlie Huang1, Zhidong Deng1∗,

1State Key Laboratory of Intelligent Technology and Systems
Beijing National Research Center for Information Science and Technology

Department of Computer Science, Tsinghua University, Beijing 100084, China
sy-wang14@mails.tsinghua.edu.cn, aihuang@tsinghua.edu.cn,

michael@tsinghua.edu.cn

Abstract
Text classification is a fundamental problem
in natural language processing. As a popular
deep learning model, convolutional neural net-
work(CNN) has demonstrated great success in
this task. However, most existing CNN models
apply convolution filters of fixed window size,
thereby unable to learn variable n-gram features
flexibly. In this paper, we present a densely
connected CNN with multi-scale feature attention
for text classification. The dense connections build
short-cut paths between upstream and downstream
convolutional blocks, which enable the model to
compose features of larger scale from those of
smaller scale, and thus produce variable n-gram
features. Furthermore, a multi-scale feature atten-
tion is developed to adaptively select multi-scale
features for classification. Extensive experiments
demonstrate that our model obtains competitive
performance against state-of-the-art baselines on
six benchmark datasets. Attention visualization
further reveals the model’s ability to select proper
n-gram features for text classification. Our code is
available at: https://github.com/wangs
hy31/Densely-Connected-CNN-with-
Multiscale-Feature-Attention.git.

1 Introduction
Text classification is a fundamental problem in natural lan-
guage processing (NLP). In recent years, deep learning mod-
els have been widely applied to this task, including recur-
rent neural networks (RNN), recursive autoencoders, convo-
lutional neural networks (CNN). In particular, thanks to the
great success of CNN in computer vision, CNN has also been
successfully applied to NLP applications such as text classi-
fication [Kim, 2014; Blunsom et al., 2014; Lei et al., 2015;
Zhang et al., 2015; Conneau et al., 2017].

However, most existing CNN models employ convolu-
tion filters of fixed size: there is a fixed-size window slid-
ing from the beginning to the end of a text to produce fea-
ture maps, which is equivalent to extracting fixed-size n-

∗Corresponding author (Zhidong Deng).

Figure 1: (Better viewed in color) Comparison between feature rep-
resentations using convolution filters of fixed window size and of
multi-scale window size. The first three rows show feature represen-
tations with convolution filters of size 1/2/3, respectively. The last
row shows multi-scale feature representations that adaptively select
unigram and trigram features.

gram features [Zhang et al., 2015; Conneau et al., 2017;
Wang et al., 2017]. This has apparent drawbacks in that text
classification needs to extract variable-size features such as
phrases to form a better representation [Zhang et al., 2018].
For example, sentiment classification for sentence - “He’s
nice to talk to without being patronizing” (as shown in Figure
1) requires to extract a unigram feature “nice” and a trigram
feature “without being patronizing”, which are both positive
words or phrases. However, when applying filters of size 1
(see the first row of Figure 1), we obtain one positive feature
“nice” (green dot) and one negative feature “patronizing” (red
dot), which is not friendly for classification. When using fil-
ters of a larger size (e.g., 3, see the third row of Figure 1), we
can obtain an ideal neural response for phrase “without be-
ing patronizing” (a positive phrase). However, the response
for the unigram “nice” is undesirably decreased because the
model includes additional unnecessary information in either
“He’s nice to” or “nice to talk” (see the third row of Figure
1). We term this issue as the inability to adaptively select
multi-scale features in a CNN model for text classification.
Multi-scale features refer to n-gram features with variable n,
such as unigram (n = 1), bigram (n = 2), trigram (n = 3)
and so on.

A possible solution to this issue is to utilize filters with
different window sizes to extract multi-scale features. How-

https://github.com/wangshy31/Densely-Connected-CNN-with-Multiscale-Feature-Attention.git
https://github.com/wangshy31/Densely-Connected-CNN-with-Multiscale-Feature-Attention.git
https://github.com/wangshy31/Densely-Connected-CNN-with-Multiscale-Feature-Attention.git


ever, such a solution requires much experimental efforts to
find the optimal combinations of different filter sizes. More-
over, this solution is essentially to widen the network with
different filter sizes, equivalent to learning several separate,
disconnected networks in parallel. Thus, the interactions of
feature maps from different filter sizes are not fully exploited.
We argue that a deeper model is more elegant than a wider
solution in that: a deeper model is more compact because
it can construct hierarchical representations by multi-level
abstraction and there is no need to re-learn redundant fea-
ture maps. As shown in Figure 2(a), the model can con-
struct trigram features equivalently in the third layer (e.g.,
f ′(x1, x2, x3)) by stacking another convolutional layer (win-
dow size w = 2) to the second layer which extracts bigram
features (e.g., f(x1, x2) and f(x2, x3)). Thus, feature maps
at upstream layers can be effectively re-used at downstream
layers. Furthermore, features can be reused more flexibly
by adding dense connections between layers (denoted by the
red dotted lines in Figure 2). For instance, a trigram feature
may be composed not only from f(x1, x2) and f(x2, x3), but
also possibly from x1 and f(x2, x3) (i.e., x1(x2x3)). Conse-
quently, such a deep model offers more flexibility to construct
multi-scale features than a wide model.

In this paper, we propose a densely connected CNN model
with multi-scale feature attention for text classification. To
equip the model with the ability to generate multi-scale fea-
tures, we adopt dense connections between different convolu-
tional layers, inspired by [Huang et al., 2017a]. Through the
dense connections, the model can compose features of larger
scale from those of smaller scale more flexibly. To select task-
friendly features from all the possible multi-scale features,
we design an attention module before the classification layer.
The two characteristics enable the proposed model to obtain
competitive results on several text classification datasets.

In summary, the contributions of this paper include:

• We propose a new CNN model that is equipped
with dense connections between convolutional layers
and with a multi-scale feature attention mechanism.
Through these two design considerations, the model is
able to adaptively select multi-scale features for text
classification.
• We extensively evaluate the model on six text classi-

fication tasks. The model obtains competitive perfor-
mance compared with state-of-the-art baselines on sev-
eral benchmark datasets.

2 Related Work
Deep Neural Networks
Recently, deep neural networks have achieved great success
in many NLP applications. There are a variety of representa-
tion learning models for text representation. Recurrent neural
networks (RNN), including long short-term memory (LSTM)
and gated recurrent units (GRU) have been widely used in text
processing because of their strong performance in processing
the structure of text. Several variants are also proposed, such
as [Tai et al., 2015; Huang et al., 2017b].

Another type of popular models are undoubtedly CNNs.
[Collobert et al., 2011] utilized convolution filters on sliding

windows for a text sequence and applied a max operation to
capture the most useful local features. [Kim, 2014] adopted
multiple filters with different window sizes to extract multi-
scale convolutional features for text classification. A dynamic
k-max pooling mechanism was proposed in [Blunsom et al.,
2014]. [Lei et al., 2015] proposed a novel feature mapping
operator to generate non-consecutive n-gram features. [Wang
et al., 2017] used a large taxonomy knowledge base to im-
prove performance. Different from taking word vectors as in-
put, [Johnson and Zhang, 2015] applied CNN to learn the em-
beddings of text regions directly. Based on the text region em-
beddings, [Johnson and Zhang, 2017] aims to deepen CNNs
without increasing much computational cost. All the above
approaches are based on word embeddings, while [Zhang et
al., 2015] proposed character-level CNN models and reported
competitive results. [Xiao and Cho, 2016] utilized both con-
volutional and recurrent layers to encode character inputs.
[Conneau et al., 2017] adopted very deep convolutional neu-
ral networks , i.e. ResNet [He et al., 2016] to text classifica-
tion.
Attention Mechanism
Attention becomes an effective mechanism for selecting sig-
nificant information to obtain superior results. Deep neu-
ral networks, including CNNs and RNNs, can obtain bet-
ter results if equipped with attention mechanisms. Among
many proposed attention mechanisms, there are some notice-
able examples including soft and hard attention [Xu et al.,
2015], global and local attention [Luong et al., 2015], and
source-target attention and self attention [Lin et al., 2017].
Specifically, [Yang et al., 2016] developed a two-level atten-
tion mechanism on GRU (i.e. word attention and sentence
attention). [Yin et al., 2016] proposed a CNN based attention
module for jointly performing attention between two CNN
hierarchies. [Lin et al., 2017] developed an attention mecha-
nism for extracting an interpretable sentence embedding.

3 Method

3.1 Overview

The framework of our model is shown in Figure 2. The left
panel shows the model in an intuitive view while the right
one gives more technical details. The model begins with a
text input x1x2 · · ·xm, and generates multi-scale features by
convolution blocks and through dense connections (denoted
by the red dotted lines). The upstream convolutional blocks
construct features for small n-grams, and downstream ones
for large n-gram features1. The dense connections enable
the model to compose features of larger scale from those of
smaller scale flexibly because downstream blocks have access
to all upstream feature maps. To select task-friendly features,
an attention mechanism is presented to re-weigh these multi-
scale feature maps through the two processes: filter ensemble
(Fensem(·)) and scale reweight (Freweight(·)). A final repre-
sentation is then built for text classification.

1Upstream blocks are close to input while downstream close to
output.



Figure 2: (Better viewed in color) Framework of our densely connected CNN with multi-scale feature attention. (a) Intuitive illustration
of how the model generates multi-scale features and how the features are attentively used for classification. (b) Technical implementation,
including convolution and concatenation operations, dense connections, and multi-scale feature attention. Red dotted lines indicate dense
connections.

3.2 Densely Connected CNN
Preliminary. The proposed model is illustrated in Figure 2.
Let xi ∈ Rd be the d-dimensional pretrained word vector of
the i-th word in a text and the input text can be represented as
a matrix:

X = [x1,x2, ...,xm]m×d (1)

where m is the number of words in a text. In addition to
the input X , the outputs of each intermediate layer can be
similarly represented as Xl = [x1

l ,x
2
l , ...,x

m
l ]m×k, where l

(1 ≤ l ≤ L) is the layer index. L denotes the total number
of convolutional blocks and k is the dimension of the trans-
formed feature representation.

A convolutional block generates intermediate feature rep-
resentations, which can be formulated as below:

Xl = f(Wl,Xl−1) (2)

where f(·) is a composite function consisting of three cas-
caded operations: a convolution, a batch normalization (BN)
[Ioffe and Szegedy, 2015], and a rectified linear unit (ReLU)
[Nair and Hinton, 2010]. Xl is produced by receiving
one preceding features Xl−1 with learnable weights Wl ∈
Rk×w×k. The weight matrix Wl consists of k filters, each
of which is of size w × k, convolving w adjacent vectors
(e.g., xi

l−1 and xi+1
l−1 when w = 2). This is denoted by

“Convolutional Block, w, k” in Figure 2. Notice that we
use zero padding to the two sides of the input to ensure that
the resulting feature map has the same size as the input. For
instance, we pad 0 ∈ Rk after xm

l when w = 2; and pad 0
before x1

l and after xm
l when w = 3.

Traditional CNN models stack convolutional blocks se-
quentially to form hierarchical representations. For text pro-

cessing, convolutions can be viewed as to extract n-gram fea-
tures over a word sequence, and the hierarchical structure
enables CNNs to produce features of large scale incremen-
tally. However, only conventional connections may not deal
with language composition properly, as illustrated in the in-
troduction. Inspired by [Huang et al., 2017a], we adopt dense
connections between convolutional layers to equip the model
with the ability to compose representations from multi-scale
features (i.e., variable n-grams), which is critical for language
processing.

Dense connections. Motivated by the above observation,
we adopt a densely connected CNN for text classification, fol-
lowing DenseNet for computer vision [Huang et al., 2017a].
The model takes as input the outputs of all upstream layers
X1,X2,· · · , Xl−1, and generates feature maps for the cur-
rent layer l, as formulated below:

Xl = f(Wl, [X1,X2, ...,Xl−1]) (3)

where [X1,X2, ...,Xl−1] refers to the concatenation of the
feature-maps produced by layers 1, ..., l − 1 and each Xi ∈
Rm×k. WeightWl ∈ R(l−1)×k×w×k . As shown in the bot-
tom of the legend of Figure 2, the model produces X1 and
X2, then generates features by applying k filters of sizew×k
onX1 andX2 respectively, resulting in two m× k matrices.
X3 is obtained by element-wise addition of the two resulting
matrices. Notice that we first apply one layer of k filters of
size 1 × d to convert the initial feature dimension from d to
k. The size of all the feature maps is preserved to the same
(m × k) because they will be fed into the attention module
which requires the same dimension for multi-scale features.

There is a remarkable advantage in such densely connected
CNN: the model computes downstream feature maps (corre-



sponding to larger-scale n-grams) by considering upstream
features (smaller-scale n-grams). In this manner, words or
shorter phrases will be fully used in obtaining feature maps of
longer phrases, resulting in the flexibility of extracting multi-
scale features.

3.3 Multi-scale Feature Attention
Through dense connections, the downstream layers of the
CNN model has access to the features generated at the up-
stream layers. However, effective use of these features
(some are redundant) is still a key issue. In this subsection,
we present a multi-scale feature attention mechanism to ef-
fectively use these features for classification. The mecha-
nism adaptively selects features of different scales at each
position of a text. As shown in Figure 2(a), at position
i, the attention mechanism computes a weight distribution
over xi, f(xi, xi+1) (features from the second layer), and
f(xi, xi+1, · · · , xi+L−1) from the L-th layer. These feature
values indicate the responses of multi-scale n-grams, i.e., un-
igram xi, bigram xixi+1,..., and L-gram xixi+1 · · ·xi+L−1.

The attention mechanism contains two operations: filter
ensemble and scale reweight. Filter ensemble aims to de-
velop scalar descriptors sil to represent features of each scale
xi
l at position i. Scale reweight uses the descriptors sil as input

and outputs a softmax distribution of attention weights to re-
weigh these features of different scales, i.e., xi

1,x
i
2, · · · ,xi

L.
Filter ensemble. As shown in Figure 2, we use

k filters in each convolutional block, generating Xl =
[x1

l ,x
2
l , ...,x

m
l ]m×k. Each xi

l ∈ Rk, indexed by i, denotes the
k-dimensional features in the i-th position of a text at layer l.
We then use a scalar to express each feature vector xi

l as

sil = Fensem(xi
l) =

k∑
j=1

xi
l(j) (4)

whereFensem(·) indicates a function that sums all k elements
of the input vector. The scalar can be used as a descriptor of
the feature vector, because xi

l is yielded by applying k filters
on the preceding feature maps and each value in xi

l is a neural
response value. Thus, the sum of all the values in xi

l can be
viewed as feature salience.

Scale reweight. After obtaining sil through filter ensem-
ble, we will use them as input to generate attention weights
in order to adaptively re-weight the features from different

Figure 3: Multi-scale Attention. It includes two key operations: (a)
Filter ensemble and (b) Scale reweight.

scales. We define the final representation xi
atten and atten-

tion weights αi
l as follows:

xi
atten =

L∑
l=1

αi
lx

i
l

L∑
l=1

αi
l = 1,∀i, 1 ≤ i ≤ m

(5)

where xi
l,x

i
atten ∈ Rk, and αi

l are attention weights. Note
that feature maps at different layers have correspondence to
the scale of features. For instance, when w = 2, X1 corre-
sponds to unigram features, andX3 to trigram features.

The attention weights are produced as follows:

αi = softmax(MLP(si))

si = [si1, s
i
2, ..., s

i
L]

αi = [αi
1, α

i
2, ..., α

i
L]

(6)

where sil is defined by Eq. (4), and MLP is a multi-layer
perceptron.

After being processed by the attention module, the fi-
nal representation Xatten = [x1

atten,x
2
atten, ...,x

m
atten] ∈

Rm×k is generated, which will be fed into the classification
layer.

3.4 Objective Function
The training objective is to minimize the cross-entropy loss:

φ = L(y, h(W,Xatten)) (7)

where h(W,Xatten) is the predicted output distribution
based on the final representation Xatten and y is the refer-
enced distribution. L(p, q) is the cross entropy function be-
tween two distributions p and q.

Note that supervision signals are propagated to upstream
blocks more straightforwardly through the shortcutd or dense
connections. Such connections enforce the upstream layers
to learn task-friendly features, also known as “deep supervi-
sion” [Huang et al., 2017a].

4 Experiments
4.1 Datasets
We evaluated our model on six public datasets: MR from
[Pang and Lee, 2005] and the others (AG, DBPedia, Yelp
P./F., and Amazon F.) from [Zhang et al., 2015]. The statis-
tics of the datasets are summarized in Table 2.

4.2 Implementation details
Input. Word vectors were adopted from [Pennington et al.,
2014]. The word embedding was of size 300. The input text
was padded to a fixed length - maxlen, where maxlen was
chosen 50 for MR, 100 for AG and DBPedia, and 300 for
Yelp P., Yelp F. and Amazon F., respectively.
Architecture configuration. The model was implemented
with Caffe [Jia et al., 2014]. Due to the different lengths of
input texts and the number of training samples, we adopted
5 convolutional blocks for MR and AG, and 6 convolutional
blocks for the rest datasets. We chose window size w = 3



Model MR AG DBP. Yelp P. Yelp F. Amazon F.

Linear n-gram TF-IDF∗ - 92.4 98.7 95.4 54.8 52.4
FastText∗ [Grave et al., 2017] - 92.5 98.6 95.7 63.9 60.2

RNN LSTM∗ 77.4 86.1 98.6 94.7 52.5 44.1
Discriminative-LSTM∗ [Yogatama et al., 2017] - 92.1 98.7 92.6 59.6 -

CNN

CNN [Kim, 2014] 81.5 91.6 98.6 93.5 61.0 57.4
Char-CNN∗ [Zhang et al., 2015] - 87.2 98.4 94.7 62.0 59.5
VeryDeep-CNN∗ [Conneau et al., 2017] - 91.3 98.7 95.4 64.7 63.0
Dynamic-Pool∗ (VeryDeep) [Blunsom et al., 2014] - 91.3 98.6 95.7 63.0 61.6
Knowledge-CNN∗ [Wang et al., 2017] 83.3 88.4 - - - -

RNN-CNN CNN with Recurrent Layer∗ [Xiao and Cho, 2016] - 91.4 98.6 94.5 61.8 59.2
Attention Self-Attention [Lin et al., 2017] 80.1 91.5 98.3 94.9 63.4 59.8

Ours Densely Connected CNN 80.1 92.9 99.0 96.0 64.5 62.0
+ Multi-scale Feature Attention 81.5 93.6 99.2 96.5 66.0 63.0

Table 1: Accuracy of all the models on the six datasets. The results of the baselines marked with ∗ are re-printed from the references.

Dataset MR AG DBP. Yelp
P.

Yelp
F.

Amazon
F.

Training 9, 596∗ 120K 560K 560K 650K 3M
Testing 1, 066∗ 7.6K 70k 38K 50K 650K
Classes 2 4 14 2 5 5
Avg words 24 45 55 153 155 93

Table 2: Data statistics. The asterisk (*) means there was no standard
training/test split and thus 10-fold cross validation was conducted.

and feature dimension k = 128. The classification layer
is a two-layer fully connected MLP with ReLU activation
function and softmax output. We made slight modifications
to the framework shown in Figure 2: pooling layers are
added with stride 2 after each convolutional block, which can
merge some redundant features and improve computational
efficiency. Additional pooling operations with an appropriate
stride are required in order to keep the multi-scale features
from different layers having the same size.
Training settings. We used stochastic gradient descent
(SGD) with a mini-batch of 256. The learning rate is ini-
tially set to 0.01 and then gradually decreased to e − 5. The
training process lasts at most 30 epoches on all the datasets.
We applied “L1” regularization and the momentum was set to
0.9.

4.3 Baselines and Main Results
We compared our model with several genres of popular mod-
els: linear models [Grave et al., 2017]; RNNs including
LSTM and its variants Discriminative-LSTM [Yogatama et
al., 2017]; CNNs including classical CNN [Kim, 2014], CNN
with dynamic pooling [Blunsom et al., 2014], character-level
CNN [Zhang et al., 2015], and very deep CNN [Conneau et
al., 2017]; and attention-based models such as [Lin et al.,
2017].

Main results. The results are listed in Table 1. The pro-
posed model outperforms the linear models and RNNs on all
these datasets. Compared with those shallow but wider CNNs
[Kim, 2014], our model has advantages on large datasets
(Yelp P./F. and Amazon F.) since the proposed architecture
can learn hierarchical and multi-scale features flexibly. Com-
pared to other deep CNNs, the densely connected structure

which uses fewer parameters (5-6 convolutional blocks) out-
performs the model [Conneau et al., 2017] with 29 convolu-
tional layers. Our model is better than the attention-based
model [Lin et al., 2017]. At last, the last two rows show
the performance difference with/without multi-scale feature
attention, thereby demonstrating the effectiveness of the pro-
posed attention mechanism.

N -gram Positive Category Negative Category

trigram
and a wonderful (2) is boring . (3)
is an enjoyable (3) and dull . (9)
vividly captures the(15) a waste of (10)

5-gram

it ’ s a pleasure (3) of the worst movies of (1)
the film is an enjoyable
(8)

dull , lifeless , and (8)

the best films of the(10) but it doesn ’ t (12)

7-gram

of the best films of the
year (1)

one of the worst movies
of the (1)

it ’ s refreshing to see a
(16)

meaningless , vapid and
devoid of substance (2)

can ’ t wait to see what
(18)

every joke is repeated at
least four (3)

Table 3: Examples of top 20 ranking n-grams discovered by our
model. The number in brackets denotes the rank.

4.4 Attention Visualization and Phrase Analysis
Attention Visualization: Through attention visualization
analysis, we made two observations:
1) The same word in different sentences has different optimal
feature scales depending on the context. As shown in Figure
4(a), each row indicates a weight distribution over different
feature scales xi

l(1 ≤ l ≤ L) and i is the position for word
“interesting”. When w = 3, Xl corresponds to feature maps
of (2l − 1)-gram. We presented two negative and two posi-
tive sentences. For the negative sentences, the optimal feature
scale for the positive word “interesting” is larger and includes
negators such as “not” or “nothing”, which is more adequate
for sentiment classification. Whereas in the other two positive
sentences, the optimal feature scale is smaller (X2 ∼ trigram)
to form positive phrases. Thus, the model can adaptively se-
lect task-friendly feature scales for classification.



(a) Word interesting forms meaningful features of different scales in different sentences. For the second sentence, the most weighted
(0.85) feature is a 5-gram (s nothing interesting in unfaithful).

(b) Different words in the same sentence have different optimal scales to form meaningful representation. Self-contained words such
as “unfortunately” form smaller-scale features, while long phrases form larger-scale features.

Figure 4: Multi-scale attention visualization. The values in a row are a distribution over the feature scales at a word position (see Eq. 5/6).

2) Different words in the same sentence have different op-
timal scales to form meaningful representations. As shown
in Figure 4(a), the optimal feature scale for each word in a
sentence tends to be different. For example, in this review
“not so much farcical as sour”, the model retains a smaller
scale for “not” and chooses larger scales for “much farcical
as sour”. Similar phenomena can be found in the other sen-
tence: a smaller scale for “unfortunately” and “,” since such
words are self-contained, and a larger scale for “the picture
failed to” to form meaningful representations.

To summarize, the visualization results show that the
model is able to adaptively select multi-scale features to form
more meaningful representations. Furthermore, these cases
show an agreement with our intuition.
Phrase Analysis: Table 3 lists a few phrases discovered by
our model on the MR dataset. The phrases are ranked by
the product of normalized neural responses and the logarithm
of word frequency within each scale. Results show that our
model has the ability to select task-relevant phrases, such as
“very funny.” for positive reviews while “a complete waste
of time” for negative reviews. The model may produce bad
phrase boundaries, however, this is extremely difficult with-
out structure annotations [Zhang et al., 2018].

4.5 Tuning of Hyperparamters
Window size: We justified how performance is influenced by
the window size of convolution filters applied in each block.
We varied the window size w among {2,3,5,7}. As shown in
Figure 5(a), the accuracy is not significantly influenced by the
window size. This is in line with our claim that the model is
able to construct high-level features flexibly from low-level
features through dense connections and multi-scale feature
attention.
Network Depth: We assessed how the network depth in-
fluences the performance by varying the number of convo-
lutional blocks. The results are shown in Figure 5(b). For the

(a) Window Size (b) Network Depth

Figure 5: Accuracy with different window sizes and network depths.

larger datasets (Yelp.F/Amazon.F), as the network depth in-
creases, the performance is further improved since the model
is equipped with more learnable weights. For AG, a relatively
small dataset, the performance drops slightly when increasing
the depth from 5 to 7 blocks, possibly due to over-fitting with
too many parameters. In general, increasing network depth is
able to obtain better performance on larger datasets, but not
that remarkably because of the dense connections we applied.
Note that the parameters of the 4th - 7th blocks grow almost
linearly, corresponding to 0.74M, 0.97M, 1.25M and 1.60M,
respectively.

5 Conclusion
In this paper, we present a new CNN model equipped with
dense connections and multi-scale feature attention for text
classification. Through dense connections, the model is able
to flexibly generate larger n-gram features from variable
smaller n-gram features. By multi-scale feature attention,
the model can adaptively select task-friendly yet effective
features from many multi-scale features for text classifica-
tion. The model demonstrates competitive performance on
six benchmark datasets. Attention visualization reveals that
our model can select the optimal scale to form meaningful
representation for text classification.



Acknowledgments
This work was supported partly by the National Key Re-
search and Development Program of China under Grant No.
2017YFB1302200, by research fund of Tsinghua University -
Tencent Joint Laboratory for Internet Innovation Technology,
and by the National Science Foundation of China (NSFC) un-
der Grant No. 91420106, 90820305, and 60775040.

References
[Blunsom et al., 2014] Phil Blunsom, Edward Grefenstette,

and Nal Kalchbrenner. A convolutional neural network
for modelling sentences. In ACL, 2014.

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of Machine Learning Research,
12(Aug):2493–2537, 2011.

[Conneau et al., 2017] Alexis Conneau, Holger Schwenk,
Loı̈c Barrault, and Yann Lecun. Very deep convolutional
networks for natural language processing. In EACL, 2017.

[Grave et al., 2017] Edouard Grave, Tomas Mikolov, Ar-
mand Joulin, and Piotr Bojanowski. Bag of tricks for effi-
cient text classification. EACL (2), pages 427–431, 2017.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770–778, 2016.

[Huang et al., 2017a] Gao Huang, Zhuang Liu, Laurens
van der Maaten, and Kilian Q Weinberger. Densely con-
nected convolutional networks. In CVPR, 2017.

[Huang et al., 2017b] Minlie Huang, Qiao Qian, and Xi-
aoyan Zhu. Encoding syntactic knowledge in neural net-
works for sentiment classification. ACM Transactions on
Information Systems (TOIS), 35(3):26, 2017.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In
ICML, 2015.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM,
pages 675–678, 2014.

[Johnson and Zhang, 2015] Rie Johnson and Tong Zhang.
Effective use of word order for text categorization with
convolutional neural networks. In NAACL, pages 103–112,
2015.

[Johnson and Zhang, 2017] Rie Johnson and Tong Zhang.
Deep pyramid convolutional neural networks for text cat-
egorization. In ACL, pages 562–570, 2017.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–1751,
2014.

[Lei et al., 2015] Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. Molding cnns for text: non-linear, non-
consecutive convolutions. pages 1565–1575, 2015.

[Lin et al., 2017] Zhouhan Lin, Minwei Feng,
Cı́cero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive
sentence embedding. In ICLR, 2017.

[Luong et al., 2015] Minh-Thang Luong, Hieu Pham, and
Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In EMNLP,
2015.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In ICML, pages 807–814, 2010.

[Pang and Lee, 2005] Bo Pang and Lillian Lee. Seeing stars:
Exploiting class relationships for sentiment categorization
with respect to rating scales. In ACL, pages 115–124,
2005.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In EMNLP, volume 14,
pages 1532–43, 2014.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Christopher D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory net-
works. In ACL, pages 1556–1566, 2015.

[Wang et al., 2017] Jin Wang, Zhongyuan Wang, Dawei
Zhang, and Jun Yan. Combining knowledge with deep
convolutional neural networks for short text classification.
In IJCAI, pages 2915–2921, 2017.

[Xiao and Cho, 2016] Yijun Xiao and Kyunghyun Cho. Ef-
ficient character-level document classification by com-
bining convolution and recurrent layers. arXiv preprint
arXiv:1602.00367, 2016.

[Xu et al., 2015] Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In
ICML, pages 2048–2057, 2015.

[Yang et al., 2016] Zichao Yang, Diyi Yang, Chris Dyer, Xi-
aodong He, Alexander J. Smola, and Eduard H. Hovy. Hi-
erarchical attention networks for document classification.
In NAACL, pages 1480–1489, 2016.

[Yin et al., 2016] Wenpeng Yin, Hinrich Schütze, Bing Xi-
ang, and Bowen Zhou. Abcnn: Attention-based convolu-
tional neural network for modeling sentence pairs. In ACL,
pages 259–272, 2016.

[Yogatama et al., 2017] Dani Yogatama, Chris Dyer, Wang
Ling, and Phil Blunsom. Generative and discriminative
text classification with recurrent neural networks. arXiv
preprint arXiv:1703.01898, 2017.

[Zhang et al., 2015] Xiang Zhang, Junbo Zhao, and Yann
LeCun. Character-level convolutional networks for text
classification. In NIPS, pages 649–657, 2015.

[Zhang et al., 2018] Tianyang Zhang, Minlie Huang, and
Li Zhao. Learning structured representation for text clas-
sification via reinforcement learning. In AAAI, 2018.


	Introduction
	Related Work
	Method
	Overview
	Densely Connected CNN
	Multi-scale Feature Attention
	Objective Function

	Experiments
	Datasets
	Implementation details
	Baselines and Main Results
	Attention Visualization and Phrase Analysis
	Tuning of Hyperparamters

	Conclusion

