
1

A Brief Introduction to
Reinforcement Learning

Minlie Huang (���)
Dept. of Computer Science,

Tsinghua University

aihuang@tsinghua.edu.cn

http://coai.cs.tsinghua.edu.cn/hml

mailto:aihuang@tsinghua.edu.cn
http://coai.cs.tsinghua.edu.cn/hml

2

Reinforcement Learning

Agent

Environment http://www.cs.ucl.ac.uk/staff/d.silver/web/Teac
hing_files/intro_RL.pdf

At each step t:
• The agent receives a state St

from environment
• The agent executes action At

based on the received state
• The agent receives scalar
reward Rt from the
environment

• The environment transform
into a new state St+1

3

Maze Example

States: Agent’s location
Actions: N, E, S, W
Rewards:
• 100 if reaching the goal
• -100 if reaching the dead end
• -1 per time-step

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf

4

Deep Reinforcement Learning

Deep learning to represent states, actions,
or policy functions

Robotics, control Self-driving

Language interaction System operating

5

Reinforcement Learning

� Markov Decision Process (MDP)

Figure from ICML Tutorial by Sergey Levine and Chelsea Finn

6

A MDP Game

If the agent is at state A, which action would you prefer?

7

Reinforcement Learning

� Policy: Agent’s behavior strategy
u How to choose an action given the current state in order to

maximize the total reward

� Deterministic policy�! = #(%)

� Stochastic policy�!~# % = ((!|%)

� Fully observable: % = *
� Partially observable: % ≠ *

8

Value-Based RL

� Value Based
u Learnt Value Function
u Implicit Policy

� Policy Based
u No Value Function
u Learnt Policy

� Actor-Critic
u Learnt Value Function
u Learnt Policy

9

Q-Learning: Procedure

Update !" #, %
with ∆!" #, %

" # = ()*+(,
%

!"(#, %)

%~"(#)

Generate samples
(run policy)

Fit a model
(estimate return)

Improve
policy

10

Value Function

� A value function is a prediction of future reward
u How much reward will I get from action a given state s under

policy π ?

� Q-value function (action-value function) gives expected

total reward
u Each state-action pair (s, a) has an entry q(s, a)

11

Value Function

� Q-value function gives expected total reward
u Sample an trajectory with policy π
u…"#, %#, &#'(, "#'(, %#'(, &#') , "#'), …
u Discount factor γ : between [0, 1], how far ahead in time the

algorithm looks

� Future rewards!

Delayed reward is taken into consideration

12

Value Function

� Bellman equation (with a particular policy !)

s#

s#$%

s#$&

a#

a#$%

a#$&

s#

s#$%
a#

Terminal /0102

15

Optimal Value Function

� An optimal value function is the maximum achievable value
!∗($, &) = max, [!, $, &] = !,∗ ($, &)

� Act optimally:
/∗($) = argmax

2
[!∗($, &)]

� Optimal value maximizes over all decisions
!∗ $, & = 3456 + 8max9:;<

R>5? + 8? max9:;@
R>5A

= 3456 + 8max9:;<
q∗ (s456, a>56)

16

Q-Learning: Optimization

� Optimal q-values obey Bellman function

!∗ #, % = '()[+ + -max1) !∗(#), %)|#, %)
� Minimizing mean-squared error of value function between approximate

value and true value (target)

∆6 7, 8 = 9(: + ;<8=8) 6 7′, 8′ − 6 7, 8)

� Policy @(7) : choose the action that has the maximum profit
Biased true value Approximate value

17

Q-Learning: Trial and Error

� Exploration & Exploitation : ε-greedy
u Require sufficient exploration to enable learning

u !" = $argmax* + ,", ! with probability 1 − 9
random action with probability 9

18

Q-Learning: Algorithm

Initialize ! arbitrarily
Repeat (for each episode):

Initialize "
Repeat (for each time step of episode):

Take action from " according to policy (e.g. ε-greedy) #~% "
Observe reward & and transit to new state "'

! ", # ← 1 − , ! ", # + , & + .max2' !("', #′)
" ← "′

until " is terminal

19

Q-Learning: Review

� Strength
u Learn from experience sampled from policy
u Choose the best action for each state to get highest long-term

reward

� Weakness
u Over-estimate the action values using the maximum value as

approximation for the maximum expected value
à Double Q-learning

u Large memory to store q values with increasing numbers of states
and actions
à Deep Q-learning

20

Double Q-learning

� Double estimator
u sometimes underestimates rather than overestimates the

maximum expected value

21

Function Approximation

� Represent value function by Q-network with weights !

� May use back-propagation to compute "#$ in neural

networks

� Popular choice: linear approximation, kernel methods,

decision trees, deep learning models

22

Deep Q-Learning

� Advantage
u possible to apply the algorithm to larger problems, even when the

state space is continuous
u generalize earlier experiences to previously unseen states

� Challenge
u unstable or divergent when a nonlinear function approximator

such as a neural network is used to represent Q-value

23

Q-learning: Varients

� Deep Q Network (DQN)
u Playing Atari with Deep Reinforcement Learning, V. Mnih et al.,

NIPS 2013 Workshop

� Double DQN
u Deep Reinforcement Learning with Double Q-learning, H. van

Hasselt et al., AAAI 2016

� Dueling DQN
u Dueling Network Architectures for Deep Reinforcement Learning,

Z. Wang et al., ICML 2016

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581

24

Policy-Based RL

� Value Based
u Learnt Value Function
u Implicit Policy

� Policy Based
u No Value Function
u Learnt Policy

� Actor-Critic
u Learnt Value Function
u Learnt Policy

25

Policy-Based RL

� Directly parametrize the policy: !" #, % = '[%|#, *]
� Comparing to Value-Based RL:

u Approximate the value function: ," ≈ ,.(#, %)
u Generate policy from the value function

• Greedy: taking the action that can maximize q(s,a)
• Epsilon-greedy: small probability to explore new

– %1 = 2argmax8 , #1, % with probability 1 − D
random action with probability D

26

Advantages

� Advantages:
u Better convergence properties
u Effective in high-dimensional or continuous action spaces
u Can learn stochastic policies

� Disadvantages:
u Converge to a local optimum
u High variance

27

Policy-based RL

� Markov Chain:

!" #$, &$, … , #(, &(= !(#$),
-.$

(
/" &- #- !(#-0$|#-, &-)

� Goal is to maximize the reward:

2∗ = &456&7"8(9,:)~<=(9,:)[4 #, &]
� Let @ = #, & be the state-action sequence:

2∗ = &456&7"8(A)~<=(A)[4 @]

28

Policy Search

� Goal: find best ! for policy "# $
� How to measure the quality of policy "# $?

� Objective Function %(#)
u In Policy Gradient, % # =)$~"#($)[∑ -($)]

� An optimization problem: find # to maximize %(#)
u Gradient Descent

29

Policy Gradient

� Search for a local maximum ! " by ascending the gradient

of the policy: ∆" = %&'!(")
� &'! " is the policy gradient

� And % is learning rate

30

Policy Gradient

! " = $%~'((%) + , = -./ , + , 0,

1/! " = -1/./ , + , 0,

= -./ , 1/234./ , + , 0,

1/./ , = ./ ,
1/./ ,
./ ,

= ./ , 1/234./ ,

31

Policy Gradient

!"# $ = &!"'" () (*(

= &'" (!"+,-'" () (*(

= ./~12(/)[!"+,-'" () (]

= ./~12(/) 7
89:

;
!"+,-'" <8|>8 7

89:

;
)(>8, <8)

32

One-Step MDPs

� A simple class of one-step MDPs
u Start in state !~# !
u Obtain reward $ = &!,(after one time-step
u Then terminate

� Compute policy gradient with likelihood ratios:

) * = +,~-.(,) 12(3) =1
4∈6

7(8)1
9∈:

;< 3 =4,9

><) * =1
4∈6

7(8)1
9∈:

;< 3 >< log ;< 3 =4,9
= +,~-.(,)[>< log ;< 3 2(3)]

33

Policy Gradient Theorem

� The policy gradient theorem:
u Generalizes the likelihood ratio approach to multi-step MDPs
u Replaces instantaneous reward r with long-term value !"($)

Policy Gradient Theorem
For any differentiable policy &'($)
For any policy objective function (())
the policy gradient is

'() = ,-~"/(-)[' log &' $ R"($)]

34

REINFORCE

� How to update the policy with policy gradient?

� Using stochastic gradient ascent

� Using delayed reward !" as an unbiased sample of #$(&, ()
function REINFORCE
Initialise * arbitrarily
For each episode {s1,a1,r2,…,sT-1,aT-1,rT} ~,* do

For t=1 to T-1 do
* = * + /0* 123,* 45, 65 75

end for
end for
Return *

35

Review

� Policy-Based RL: directly parametrize the policy

� Objective Function ! " : measure the quality of policy

! " = $%~'((%) +,(-)

� Policy Gradient Theorem:

./! " = $%~'((%)[./ log 3/ - R'(-)]
� REINFORCE algorithm: stochastic gradient ascent and delayed

reward

36

Actor-Critic

� Value Based
u Learnt Value Function
u Implicit Policy

� Policy Based
u No Value Function
u Learnt Policy

� Actor-Critic
u Learnt Value Function
u Learnt Policy

37

Actor-Critic

� Policy gradient still has high variance L

� Use a critic to evaluate the action just selected

� State-value function & state-action value function

V"($) = '(~*+ ,|. [q 1, $]

� Actor-Critic maintains two sets of parameters
u Actor (Policy Gradient) : Updates policy parameters θ
u Critic (Function Approximation) : Updates parameters 5 of the

state-value function

38

Actor-Critic

� Approximate policy gradient

!"# $ = &'~)*(')[!" log 0" 1 R)(1)]
→ &'~)* ' [!" log 0" 1 (4 + γV8(1′) − V8(1))]

� Fit V8 ; to sampled reward sums ∑=)(;′, ?′) ≈ =) ;, ? +
V8 ;′

A B = 1
2 ||4 + γV8(s′) − V8(s)||

G

TD error in Q-learning

Target

39

Actor-Critic: Procedure

! ← ! − $%& !

' ← ' + $)* '

+~-(/) Generate samples
(run policy)

Fit a model
(estimate return)

Improve
policy

40

Actor-Critic: Algorithm

Initialize actor ! with θ, critic V with $ arbitrarily
Repeat (for each episode):

Initialize %
Repeat (for each time step of episode):

Take action from % according to actor &~() %
Observe reward * and transit to new state %+

Evaluate TD error A % = * + 6V7 (%+) − V7 %
$ ← $ − <7=7| A % |?

Calculate A(s) using	new	critic	V7
θ ← θ + <)=H log (H s A(%)
% ← %′

until % is terminal

41

�Summary and Discussions

42

Reinforcement Learning

� Sequential decision: current decision affects future decision

� Trial-and-error: just try, do not worry making mistakes
uExplore (new possibilities)
uExploit (with the current best policy)

� Future reward: maximizing the future rewards instead of

just the intermediate rewards at each step
uRemember q(s,a)

43

Difference to Supervised Learning

� Supervised learning: given a set of samples (xi,yi),

estimate f: XàY

44

� You know what a true goal is, but do not know how to

achieve that goal

� Through interactions with environment (trial-and-error)

� Many possible solutions (policies), which is optimal?

Difference to Supervised Learning

