A Brief Introduction to
Reinforcement Learning

Minlie Huang (¥ RKZ)

Dept. of Computer Science,

Tsinghua University

aihuang@tsinghua.edu.cn ;i f};;;fff

http://coai.cs.tsinghua.edu.cn/hml

mailto:aihuang@tsinghua.edu.cn
http://coai.cs.tsinghua.edu.cn/hml

Environment

At each step t:

The agent receives a state S,
from environment

The agent executes action A,
based on the received state
The agent receives scalar
reward R, from the
environment

The environment transform
into a new state S,

£

http://www.cs.ucl.ac.uk/staff/d.silver/web/Teac oLA"N\o
hing_files/intro_RL.pdf [I I]

Maze Example

Start

States: Agent’s location
Actions: N, E, S, W

Rewards:

e 100 if reaching the goal
 -100 if reaching the dead end
* -1 pertime-step

Goal

http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf DWD

Tl

EZE

Tsinghua University

State,
Stimulus,
Situation

Agent

Reward,

Gain, Payoff,

Cost

Environment
(world)

—

Action,

Response,

Control

Deep learning to represent states, actions,
or policy functions

Robotics, control

@

n i
i

Language interaction

System operating

imil

Reinforcement Learning

® Markov Decision Process (MDP)

S; — state
0; — observation mo(at|o;) — policy
a; — action rm)(atlst) — policy (fully observed)\l

N N BN N NN SN S EEN EEN NN EEN EEN NN EEN S SN SN S SN SN N B S S .

Markov property
independent of s;_

AN
oD
5 Figure from ICML Tutorial by Sergey Levine and Chelsea Finn HMH\

A MDP Game

If the agent is at state A, which action would you prefer?

-10,80%

+10,

100% +20,

20%

+40,20%

+20,80%

6 imil

Reinforcement Learning

@ Policy: Agent’s behavior strategy

¢ How to choose an action given the current state in order to
maximize the total reward

® Deterministic policy: a = m(o)
® Stochastic policy: a~m(o) = p(alo)
® Fully observable: 0 = s

@ Partially observable: 0 + S

7 imil

Value-Based

® Value Based

& Learnt Value Function
¢ Implicit Policy

@ Policy Based

#® No Value Function
¢ Lecarnt Policy

® Actor-Critic

& Learnt Value Function
¢ Lecarnt Policy

RL

Value Function Policy

Actor

Value-Based
Critic

Policy-Based

imil

O-Learning: Procedure

Fit a model Update A (S; a)
ﬁ (estimate return) [T WO NEN)
a~m(s)

Generate samples
(run policy)
; W (s) = argmax q,(s, a)

policy a

£

9 imil

Value Function

@ A value function 1s a prediction of future reward

¢ How much reward will I get from action a given state s under
policy z ?

® Q-value function (action-value function) gives expected

total reward

¢ Each state-action pair (s, a) has an entry ¢g(s, a)

" imil

Value Function

® Q-value function gives expected total reward

¢ Sample an trajectory with policy &
.. St' At' Rt+1J St+1! At+11 Rt+2 ’ St+2'

¢ Discount factor v : between [0, 1], how far ahead in time the
algorithm looks

g=(s,a)=]E{Rt—kl + YRey2 + 72Rt+3 + | St=5,Ar=a,At41:00~T
_ %
~

Delayed reward is taken into consideration

® Future rewards!
N

" imil

Value Function

@ Bellman equation (with a particular policy)

(s, a)= E[Rtﬂ + YRey2 + 72Rt+3 + - | S5t=s,At=a, At—l—l:ooNﬂ'}

qﬂ'(s, 3) = E[Rt—l—l —+ ’}/qﬁ(SH_l, At—l—l) ‘ St:S, At:a’ At+1 N7T:|

St

dt

St+1 s,
dt+1 » E a,
St+2]
psz t+1

l Terminal state oD
: linll_

Optimal Value Function

® An optimal value function 1s the maximum achievable value

q (s,a) = mgX[qn(S, a)] = qq. (s,a)

@ Act optimally:

m*(s) = argmax|q” (s, a)]

® Optimal value maximizes over all decisions

q*(s,a) = Reyq + ymaxRey, +y?maxRys
Adt4+1 dt+2

— k
= Riy1 +Y glax q" (S¢+1,at+1)
t+1

£

. imil

O-Learning: Optimization

® Optimal g-values obey Bellman function
q*(s,a) = Eg,[R + ymaxq*(s’,a’|s,a)
al
® Minimizing mean-squared error of value function between approximate
value and true value (target)

Agq(s,a) = a(R+ymaxqg(s’,a') —q(s,a
q(s,a) = ¢R +ymaxq(s,a)—q(s a)
Y

Biased true value Approximate value

® Policy m(s) : choose the action that has the maximum profit

£

: imil

=
s W
S
A

O-Learning: Trial and Error

® Exploration & Exploitation : e-greedy

¢ Require sufficient exploration to enable learning

o argmax q(s;,a) with probability 1 — €
a; = a
‘ random action with probability €

" imil

O-Learning: Algorithm

Initialize g arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each time step of episode):
Take action from s according to policy (e.g. e-greedy) a~m(s)
Observe reward r and transit to new state s’

q(s,a) « (1—a)q(s,a) +«a (r + y max q(s’, a’))
al’l
S« s'

until s 1s terminal

g imil

O-Learning: Review

® Strength

¢ Learn from experience sampled from policy

¢ Choose the best action for each state to get highest long-term
reward

® Weakness

¢ Over-estimate the action values using the maximum value as
approximation for the maximum expected value

—> Double Q-learning
¢ Large memory to store q values with increasing numbers of states
and actions

- Deep Q-learning

o imil

Double QO-learning

® Double estimator

& sometimes underestimates rather than overestimates the
maximum expected value

I: Initialize Q*,QP,s
2: repeat

3 Choose a, based on Q“ (s, -) and QZ (s, -), observe 7, s’

4: Choose (e.g. random) either UPDATE(A) or UPDATE(B)

5: if UPDATE(A) then

6 Define a* = arg max, Q“(s’,a)

7 Q(s,a) — Q%(s,a) + a(s,a) (r + vQB(s',a*) — Q4 (s,a))

8 else if UPDATE(B) then

9: Define b* = arg max, Q?(s’,a)

10: QP (s,a) + QB (s,a) + a(s,a)(r + vQ*(s',b*) — QB(s,a))

[1: endif

12: s+« & £

20 13: until end ﬁﬁﬁ\

Function Approximation

® Represent value function by Q-network with weights 6

q(s, a,0) =~ q.(s, a)
® May use back-propagation to compute Iy g in neural

networks

@ Popular choice: linear approximation, kernel methods,

decision trees, deep learning models

£

3 imil

Deep O-Learning

® Advantage

¢ possible to apply the algorithm to larger problems, even when the
state space 1s continuous

¢ generalize earlier experiences to previously unseen states

@ Challenge

¢ unstable or divergent when a nonlinear function approximator
such as a neural network 1s used to represent Q-value

£

s imil

O-learning: Varients

® Deep Q Network (DQN)

® Playing Atari with Deep Reinforcement Learning, V. Mnih et al.,
NIPS 2013 Workshop

@ Double DQN

® Deep Reinforcement Learning with Double Q-learning, H. van
Hasselt et al., AAAI 2016

® Dueling DQN

® Dueling Network Architectures for Deep Reinforcement Learning,
Z. Wang et al., ICML 2016

S imil

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581

Policy-Based RL

® Value Based

& Learnt Value Function

¢ Implicit Policy
Value Function Policy

@ Policy Based

¢ No Value Function Value-Based é:’ltt?; Policy-Based
¢ Lcarnt Policy

® Actor-Critic

& Learnt Value Function

¢ Lecarnt Policy

2 imil

Policy-Based RL

® Directly parametrize the policy: mg(s,a) = Plals, 6]

® Comparing to Value-Based RL:

¢ Approximate the value function: gy = q™ (s, a)

¢ Generate policy from the value function
* Greedy: taking the action that can maximize ¢(s,a)
* Epsilon-greedy: small probability to explore new
argmax q(s;, a) with probability 1 — ¢
a

— Qs =
‘ random action with probability €

: imil

Advantages

® Advantages:

¢ Better convergence properties
¢ Effective in high-dimensional or continuous action spaces
¢ Can learn stochastic policies

® Disadvantages:

¢ Converge to a local optimum

¢ High variance

x imil

Policy-based RL

® Markov Chain:
T
po(s1,ay, ..., st,ar) = p(sy) 1_[g (ar|s)p(Se+1lSe ar)
t=1

® Goal 18 to maximize the reward:
0" = argmaxgE s ay~pg(s,a) [r(s, a)]
® Let T = (s, a) be the state-action sequence:

0" = argmaxgEy~p,r)[r(7)]
£

. imil

Policy Search

® Goal: find best 8 for policy o (T)
@ How to measure the quality of policy gy (T)?

® Objective Function J(0)
@ In Policy Gradient, J(0) = E,_p () [2 7(T)]

® An optimization problem: find @ to maximize J(0)

® Gradient Descent

£

: imil

Policy Gradient

® Search for a local maximum J(6) by ascending the gradient
of the policy: A8 = aVy/J(0)

® VgJ(8) is the policy gradient

® And a 1s learning rate

29 -

Policy Gradient

J(8) = Eyory oy [r(2)] = f o (Or(1)dr

Vo] (6) =f\797T9(T)7‘(T)dT

= | mg(1)Vgylogmg(t)r(t)dt

V
Vorrg (1) = mp(7) ZZ‘ZT()T) = 1o (T)Vglogme (1)

: imil

Policy Gradient

Vo] (6) =f\797T9(T)7”(T)dT

_ f 10 (D)Vplogmy (D)1 (1) de

— L1~mg(7) [Vologmy (T)7(7)]

- T 1
= ET~7T9(T) (Z \73 lOQTL’g (atlst)> (Z T(St: at))
L \t=1 -

t=1

£

J imil

One-Step MDPs

® A simple class of one-step MDPs
Start in state s~d(s)
¢ Obtain reward r = R , after one time-step

Then terminate

® Compute policy gradient with likelihood ratios:

J(@) =E 0 [2 T(T)] z d(s) z (TR 4

acA

6)(6) =) d(s)) 7p(1)Vpl0gTe() R
SES acA

— ET~71'9 (7) [Vo log g (7) 7(7)] o

:] imil

Policy Gradient Theorem

@ The policy gradient theorem:
¢ Generalizes the likelihood ratio approach to multi-step MDPs

¢ Replaces instantaneous reward r with long-term value R™ (1)

Policy Gradient Theorem
For any differentiable policy g (7)
For any policy objective function J(8)
the policy gradient is
Vo] (0) = E‘L‘~TL’9 (T)[VH log g (7) R™ (7)]
£

S imil

REINFORCE

@ How to update the policy with policy gradient?
@ Using stochastic gradient ascent

@ Using delayed reward v; as an unbiased sample of R™ (s, a)

function REINFORCE

Initialise O arbitrarily
For each episode {s.,a,r,,...,51.4,05.4,I1} ~TCg dO
Fort=1to T-1 do
0 =0+ aVylog my(s;, at) v,
end for

end for
34 Return 0 L

Review

® Policy-Based RL: directly parametrize the policy

® Objective Function J(6): measure the quality of policy

J(0) = ET~7T9(T) [2 T(T)]

® Policy Gradient Theorem:
Vo] (0) = Erry(0)[Vo log g (7) R™(7)]

® REINFORCE algorithm: stochastic gradient ascent and delayed

reward

s imil

Actor-Critic

® Value Based

& Learnt Value Function

¢ Implicit Policy
Value Function Policy

@ Policy Based

4 No Value Function Value-Based Actor
Critic

Policy-Based

¢ Lecarnt Policy

® Actor-Critic

& Learnt Value Function

¢ Lecarnt Policy

s imil

Actor-Critic

@ Policy gradient still has high variance ®
@ Use a critic to evaluate the action just selected

® State-value function & state-action value function

VW (S) — Ea~n9 (a|s) [Q(a; S)]

® Actor-Critic maintains two sets of parameters

¢ Actor (Policy Gradient) : Updates policy parameters 0

Critic (Function Approximation) : Updates parameters w of the
state-value function

, imil

Actor-Critic

® Approximate policy gradient
Vo] (0) = Epry()[Vg log mg(7) R™(7)]

- ET~TL’9(T)[V9 log g (T) (T + YVW (T) o VW (T))]
\— _/

TD error in Q-learning

® FitV,,(s) to sampled reward sums) R"(s’,a’) = R™(s,a) +

Vw(S,) Target
A
1 7 I
ST+ ¥V () = V(9117
£\

. imil

Liw) =

2 a

Actor-Critic: Procedure

Fit a model

~ Generate samples
Improve
; policy 0 <0+ VB](H)

£

* Tl

Actor-Critic: Algorithm

Initialize actor r with 6, critic V'with w arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each time step of episode):
Take action from s according to actor a~mg(s)
Observe reward r and transit to new state s’
Evaluate TD error A(s) =r +yV,, (s") —V,,(s)
w e w—a, R, ||AG)]]?
Calculate A(s) using new critic V,,
0 0+ agVylogmy(s)A(s)
Ses

until s 1s terminal oD
40 mﬁﬂ ﬁ" \

@Summary and Discussions

: imil

Reinforcement Learning

® Sequential decision: current decision affects future decision

® Trial-and-error: just try, do not worry making mistakes

¢ Explore (new possibilities)
¢ Exploit (with the current best policy)

@ Future reward: maximizing the future rewards instead of

just the intermediate rewards at each step

¢ Remember q(s,a)

£

: imil

Difference to Supervised Learning

@ Supervised learning: given a set of samples (x.,y,),

estimate f: X=2Y

BRBDRD
gl anne

2 2999

(t| tee

e =

N A A _
“0002k
g S 1 P

e (TSi0N

Space Invaders Breakout Enduro

: imil

Difference to Supervised Learning

® You know what a true goal 1s, but do not know how to

achieve that goal
@ Through interactions with environment (trial-and-error)

® Many possible solutions (policies), which i1s optimal?

N
~Jo
= il

