

Reinforcement Learning in Natural Language Processing (&Search)

Minlie Huang (黄民烈)

Dept. of Computer Science,
Tsinghua University

aihuang@tsinghua.edu.cn

http://coai.cs.tsinghua.edu.cn/hml

Reinforcement Learning

- Sequential decision: current decision affects future decision
- Trial-and-error: just try, do not worry making mistakes
 - **Explore** (new possibilities)
 - Exploit (with the current best policy)
- Future reward: maximizing the future rewards instead of just the intermediate rewards at each step

$$q_{\pi}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\right]$$
 $q_{\pi}(s,a) = \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a, A_{t+1} \sim \pi\right]$

Applying RL in NLP

- Challenges (Sparse reward, high-dimensional action space, high variance in training)
 - Discrete symbols
 - No simulator (or too expensive)
- Strengthens of RL
 - ♦ Weak supervision without explicit annotations
 - ◆ **Trial-and-error**: probabilistic exploring
 - ◆ Accumulative rewards: encoding expert/prior knowledge in reward design

Why RL in NLP

- Learning to search and reason
- Directly optimize the end metrics (BLEU, ROUGE, Acc, F₁)
 - ◆ Machine translation, language generation, summarization
- Make discrete operations BP-able
 - Sampling
 - Argmax
 - Binary operations

Applying RL in NLP

- Immediate rewards: t (time step), a (action), R (reward)
- Deep Q-learning

Agent scan

Applying RL in NLP

- Delayed rewards
- Policy-based

Reward Estimator

- Comparing with goldstandard: BLEU\ACC\F1
- > By classifier: likelihood
- Prior/domain expertise:
 sparsity or continuity

Agent scan

Applications

- Search and Reasoning: model structure, text structure, reasoning path, etc.
- Instance Selection: unlabeled data selection, data denoising, noisy label correction
- Strategy Optimization: ranking, dialogue strategy, language game, negotiation, text compression, language generation

Search and Reasoning

- 1. Find optimal model structure
- 2. Search for represent. structure
- 3. Search for reasoning path

- ① Andreas, Jacob, et al. Learning to compose neural networks for question answering. NAACL 2016.
- 2 Barret Zoph, Quoc V. Le. Neural Architecture Search with Reinforcement Learning. ICLR 2017.
- ③ Pham, Hieu, et al. Efficient Neural Architecture Search via Parameter Sharing. arXiv preprint arXiv:1802.03268 (2018).
- 4 Tianyang Zhang, Minlie Huang, Li Zhao. Learning Structured Representation for Text Classification via Reinforcement Learning. AAAI 2018, New Orleans, Louisiana, USA.
- ⑤ Das et al. Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning. arXiv:1711.05851.

Composing Network Structure (Andreas et al., NAACL2016)

Figure 1: A learned syntactic analysis (a) is used to assemble a collection of neural modules (b) into a deep neural network (c), and applied to a world representation (d) to produce an answer.

Figure 3: Generation of layout candidates. The input sentence (a) is represented as a dependency parse (b). Fragments of this dependency parse are then associated with appropriate modules (c), and these fragments are assembled into full layouts (d).

Neural Architecture Search Singhua University (Zoph&Le, ICLR2017)

Layer N+1

the controller

Number Filter Filter Stride Stride Number Filter of Filters Height Width Height Width of Filters Height

Layer N

Layer N-1

Neural Architecture Search (Zoph&Le, ICLR2017)

- Reward R: the accuracy of the configured model
- **REINFORCE** algorithm

$$J(\theta_c) = E_{P(a_{1:T};\theta_c)}[R]$$

$$\nabla_{\theta_c} J(\theta_c) = \sum_{t=1}^T E_{P(a_{1:T};\theta_c)} \left[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \right]$$

Discovering Text Structures (Zhang, Huang, Zhao; AAAI 2018)

• How can we identify task-relevant structures without explicit annotations on structure?

Origin text	Cho continues her exploration of the outer limits of raunch with considerable brio.					
ID-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.					
HS-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.					
Origin text	Much smarter and more attentive than it first sets out to be.					
ID-LSTM	Much smarter and more attentive than it first sets out to be.					
HS-LSTM	Much smarter and more attentive than it first sets out to be.					
Origin text	Offers an interesting look at the rapidly changing face of Beijing.					
ID-LSTM	Offers an interesting look at the rapidly changing face of Beijing.					
HS-LSTM	Offers an interesting look at the rapidly changing face of Beijing .					

- Challenges
 - ◆ NO explicit annotations on structure-weak supervision
 - ◆ Trial-and-error, measured by delayed rewards

Model Structure

Policy Network(PNet)

Structured Representation Model

Classification Network(CNet)

- Policy Network:
 - Samples an action at each state
 - ◆ Two models: Information Distilled LSTM, Hierarchically Structured LSTM
- Structured Representation Model: transfer action sequence to representation
- Classification Network: provide reward signals

Policy Network (PNet)

\bullet State s_t

- Encodes the current input and previous contexts
- Provided by different representation models

\bullet Action a_t

- **♦** {Retain, Delete} in Information Distilled LSTM
- **♦** {Inside, End} in Hierarchically Structured LSTM

\bullet Reward r_t

- Calculated from the classification likelihood
- ◆ A factor considering the tendency of structure selection

Policy Network (PNet)

• Maximize the expected reward:

$$J(\Theta) = \mathbb{E}_{(\mathbf{s_t}, a_t) \sim P_{\Theta}(\mathbf{s_t}, a_t)} r(\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L)$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} P_{\Theta}(\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L) R_L$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} p(\mathbf{s_1}) \prod_t \pi_{\Theta}(a_t | \mathbf{s_t}) p(\mathbf{s_{t+1}} | \mathbf{s_t}, a_t) R_L$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} \prod_t \pi_{\Theta}(a_t | \mathbf{s_t}) R_L.$$

• Update the policy network with policy gradient:

$$\nabla_{\Theta} J(\Theta) = \sum_{t=1}^{L} R_L \nabla_{\Theta} \log \pi_{\Theta}(a_t | \mathbf{s_t})$$

Classification Network (CNet)

• CNet is trained via cross entropy (loss function):

$$P(y|X) = softmax(\mathbf{W_sh_L} + \mathbf{b_s}),$$

$$\mathcal{L} = \sum_{X \in \mathcal{D}} - \sum_{y=1}^{K} \hat{p}(y, X) \log P(y|X)$$

Information Distilled LSTM (ID-LSTM)

- Distill the most important words and remove irrelevant words
- Sentence representation: the last hidden state of ID-LSTM

$$P(y|X) = softmax(\mathbf{W_sh_L} + \mathbf{b_s})$$

Information Distilled LSTM (ID-LSTM

States:

$$\mathbf{s_t} = \mathbf{c_{t-1}} \oplus \mathbf{h_{t-1}} \oplus \mathbf{x_t},$$

$$\mathbf{c_t}, \mathbf{h_t} = \begin{cases} \mathbf{c_{t-1}}, \mathbf{h_{t-1}}, & a_t = Delete \\ \Phi(\mathbf{c_{t-1}}, \mathbf{h_{t-1}}, \mathbf{x_t}), & a_t = Retain \end{cases}$$

• Rewards:

$$R_L = \log P(c_g|X) + \gamma L'/L_c$$

the proportion of the number of deleted words to the sentence length

Hierarchically Structured LSTM(HS-LSTM)

- Build a structured representation by discovering hierarchical structures in a sentence
- Two-level structure:
 - ◆ Word-level LSTM + phrase-level LSTM
 - ◆ Sentence representation: the last hidden state of phrase-level LSTM

Hierarchically Structured LSTM(HS-LSTM)

• Action: {Inside, End}

$\overline{a_{t-1}}$	a_t	Structure Selection
Inside	Inside	A phrase continues at x_t .
Inside	End	A old phrase ends at x_t .
End	Inside	A new phrase begins at x_t .
End	End	x_t is a single-word phrase.

$$\bullet$$
 States: $\mathbf{s_t} = \mathbf{c_{t-1}^p} \oplus \mathbf{h_{t-1}^p} \oplus \mathbf{c_t^w} \oplus \mathbf{h_t^w}$

$$\text{Word-level LSTM} \quad \mathbf{c_t^w}, \mathbf{h_t^w} = \left\{ \begin{array}{ll} \Phi^w(\mathbf{0}, \mathbf{0}, \mathbf{x_t}), & a_{t-1} = End \\ \Phi^w(\mathbf{c_{t-1}^w}, \mathbf{h_{t-1}^w}, \mathbf{x_t}), & a_{t-1} = Inside \end{array} \right.$$

$$\text{Phrase-level LSTM} \ \ \mathbf{c_t^p}, \mathbf{h_t^p} = \left\{ \begin{array}{ll} \Phi^p(\mathbf{c_{t-1}^p}, \mathbf{h_{t-1}^p}, \mathbf{h_t^w}), & a_t = End \\ \mathbf{c_{t-1}^p}, \mathbf{h_{t-1}^p}, & a_t = Inside \end{array} \right.$$

• Rewards:
$$R_L = \log P(c_g|X) - \gamma(L'/L + 0.1L/L')$$

a unimodal function of the number of phrases (a good phrase structure should contain neither too many nor too few phrases)

Experiment

Dataset

- ◆ MR: movie reviews (Pang and Lee 2005)
- ◆ SST: Stanford Sentiment Treebank, a public sentiment analysis dataset with five classes (Socher et al. 2013)
- ◆ **Subj**: subjective or objective sentence for subjectivity classification (Pang and Lee 2004)
- ◆ **AG**: AG's news corpus, a large topic classification dataset constructed by (Zhang, Zhao, and LeCun 2015)

Experiment

Classification Results

Models	MR	SST	Subj	AG
LSTM	77.4*	46.4*	92.2	90.9
biLSTM	79.7*	49.1*	92.8	91.6
CNN	81.5*	48.0*	93.4*	91.6
RAE	76.2*	47.8	92.8	90.3
Tree-LSTM	80.7*	50.1	93.2	91.8
Self-Attentive	80.1	47.2	92.5	91.1
ID-LSTM	81.6	50.0	93.5	92.2
HS-LSTM	82.1	49.8	93.7	92.5

Examples by ID-LSTM/HS-LSTM

Origin text	Cho continues her exploration of the outer limits of raunch with considerable brio.				
ID-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.				
HS-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.				
Origin text	Much smarter and more attentive than it first sets out to be.				
ID-LSTM	Much smarter and more attentive than it first sets out to be.				
HS-LSTM	Much smarter and more attentive than it first sets out to be.				
Origin text	Offers an interesting look at the rapidly changing face of Beijing.				
ID-LSTM	Offers an interesting look at the rapidly changing face of Beijing.				
HS-LSTM	Offers an interesting look at the rapidly changing face of Beijing.				

Search for Reasoning Path

- Input: query
 - -(e1, r, ?)
 - (Colin Kaepernick, Nationality, ?)
- Output: answer entity
 - e2
 - USA

Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning. Das et al., arXiv:1711.05851.

Search for Reasoning Path

Model

• States: encodes the query, the answer, the current entity.

$$S = (e_t, e_{1q}, r_q, e_{2q})$$

 Observations: the complete state of the environment is not observable, as the answer is not observed

$$\mathcal{O}(s = (e_t, e_{1q}, r_q, e_{2q})) = (e_t, e_{1q}, r_q)$$

Model

 Actions: the set of possible actions consists of all outgoing edges of the current vertex

$$\mathcal{A}_{S} = \{ (e_{t}, r, v) \in E : S = (e_{t}, e_{1q}, r_{q}, e_{2q}), r \in \mathcal{R}, v \in V \} \cup \{ (s, \emptyset, s) \}$$

• Rewards: only have a terminal reward of +1 if the current location is the correct answer at the end and 0 otherwise

$$R(S_T) = \mathbb{I}\{e_t = e_{2q}\}$$

Instance Selection

- 1. Selecting unlabeled data in SSL or co-training
- 2. Selecting mini-batch order in SGD
- 3. Data denoising (removing noisy instances)
- 4. Label correction in noisy labeling
- ① Meng Fang, Yuan Li, Trevor Cohn. Learning how to Active Learn: A Deep Reinforcement Learning Approach. EMNLP 2017.
- 2 Yang Fan, Fei Tian, Tao Qin, Jiang Bian, Tie-Yan Liu. Learning What Data to Learn.
- ③ Jiawei Wu, Lei Li, Willian Yang Wang. Reinforced Co-Training. NAACL 2018.
- (4) Jun Feng, Minlie Huang, Li Zhao, Yang Yang, Xiaoyan Zhu. Reinforcement Learning for Relation Classification from Noisy Data. AAAI 2018.
- ⑤ Zeng et al., Large Scaled Relation Extraction with Reinforcement Learning. AAAI 2018.
- ® Ryuichi Takanobu, Minlie Huang, Zhongzhou Zhao, Fenglin Li, Haiqing Chen, Xiaoyan Zhu, Liqiang Nie. A Weakly Supervised Method for Topic Segmentation and Labeling in Goal-oriented Dialogues via Reinforcement Learning. IJCAI-ECAI 2018.

Tsinghua University

Unlabeled Data Selection (Fang et al., EMNLP2017)

- **State**: the candidate instance being considered for annotation and the labelled dataset constructed in steps 1,2,3,..., i
- Action: 0/1, whether to use x_i for training
- **Reward**: the accuracy margin in two model updates.
- Optimization: deep Q-learning

Reinforced CoTraining (Wu et al., NAACL2018)

Mini-Batch Selection in SGD (Fan et al., 2017)

- In SGD, the order of data batch in model update is important
- State: data feature, base model feature, combination of the two

Relation Classification (or extraction)

[Obama]_{e1} was born in the [United States]_{e2}.

Relation: BornIn

Distant Supervision (noisy labeling problem)

[Barack Obama]_{e1} is the 44th President of the [United States]_{e2}.

Triple in knowledge base:<Barack_Obama, *BornIn*, United_States>

Relation: **BornIn**

Instance Denoising (Feng et al., AAAI 2018)

- Two limitations of previous works:
 - Unable to handle the sentence-level prediction

How can we remove noisy data to improve relation extraction without explicit annotations?

Model Structure

 The model consists of an instance selector and a relation classifier

- Challenges:
 - Instance selector has no explicit knowledge about which sentences are labeled incorrectly
 - Weak supervision -> delayed reward
 - Trail-and-error search
 - How to train the two modules jointly

Reinforcement

Learning

Model Structure

The Logic Why it Works

- Start from noisy data to pretrain relation classifier and instance selector
- Remove noisy data
- Train better classifier to obtain better reward estimator
- Train better policy with more accurate reward estimator
- Remove noisy data more accurately

Instance Selector

- Instance selection as a reinforcement learning problem
 - \diamond State: $F(s_i)$ the current sentence, the already selected sentences, and the entity pair
 - \diamond **Action**: $\{0,1\}$, select the current sentence or not

$$\pi_{\Theta}(s_i, a_i) = P_{\Theta}(a_i | s_i)$$

$$= a_i \sigma(\mathbf{W} * \mathbf{F}(s_i) + \mathbf{b})$$

$$+ (1 - a_i)(1 - \sigma(\mathbf{W} * \mathbf{F}(s_i) + \mathbf{b}))$$

◆ **Reward:** the total likelihood of the sent. bag

$$r(s_i|B) = \begin{cases} 0 & i < |B| + 1\\ \frac{1}{|\hat{B}|} \sum_{x_j \in \hat{B}} \log p(r|x_j) & i = |B| + 1 \end{cases}$$

Instance Selector

- Optimization:
 - Maximize the expected total rewards

$$J(\Theta) = V_{\Theta}(s_1|B)$$

$$= E_{s_1,a_1,s_2,...,s_i,a_i,s_{i+1}...} \left[\sum_{i=0}^{|B|+1} r(s_i|B) \right]$$

◆ Update parameters with the **REINFORCE** algorithm

$$\Theta \leftarrow \Theta + \alpha \sum_{i=1}^{|B|} v_i \nabla_{\Theta} \log \pi_{\Theta}(s_i, a_i)$$

Relation Classifier

A CNN architecture to classify relations

$$\mathbf{L} = \text{CNN}(\mathbf{x})$$

$$p(r|x; \mathbf{\Phi}) = softmax(\mathbf{W}_r * tanh(\mathbf{L}) + \mathbf{b}_r)$$

Optimization: cross-entropy as the objective function

$$\mathcal{J}(\Phi) = -\frac{1}{|\hat{X}|} \sum_{i=1}^{|X|} \log p(r_i|x_i; \Phi)$$

Training Procedure

- Overall Training Procedure
 - 1. Pre-train the CNN model of the relation classifier
 - 2. Pre-train the policy network of the instance selector with the CNN model fixed
 - 3. Jointly train the CNN model and the policy network

Experiment

- Dataset
 - ◆ NYT and developed by (Riedel, Yao, and McCallum 2010)
- Baselines
 - ◆ CNN: is a sentence-level classification model. It does not consider the noisy labeling problem.
 - ◆ CNN+Max: assumes that there is one sentence describing the relation in a bag and chooses the most correct sentence in each bag.
 - ◆ CNN+ATT: adopts a sentence-level attention over the sentences in a bag and thus can down weight noisy sentences in a bag.

Experiment

Sentence-Level Relation Classification

Method	Macro F_1	Accuracy
CNN	0.40	0.60
CNN+Max	0.06	0.34
CNN+ATT	0.29	0.56
CNN+RL(ours)	0.42	0.64

Noisy Label Correction (Takanobu et al., IJCAI 2018)

oJi	(A: B:	The release date of $\langle MODEL \rangle$??? $\langle MODEL \rangle$ will be available for pre-order on 19
Product-info	В.	April and launch on 26.
du	A:	How long can the battery last?
ro	B:	It's equipped with a 4,000 mAh battery up to 8 hours
	(of HD video playing or 10 hours of web browsing.
on	(A:	Can I use a coupon?
oti	B :	When entering your payment on the checkout page,
mc \	Ì	click <i>Redeem a coupon</i> below your payment method.
Pro	B :	You can check here for more details: \(\text{URL} \).
int	(A :	OK. Support payment by installments?
me	B :	Sure. We provide an interest-free installment option
Payment Promotion		for up to 6 months.

Table 1: An example of customer service dialogues, translated from Chinese. Utterances in the same color are of the same topic.

Noisy Label Correction (Takanobu et al., IJCAI 2018)

Datasets	SmartPhone	Clothing
# Topic category # Training session # Training utterance # Gold-standard session	7 12,315 430,462 300	10 10,000 338,534 315
# Gold-standard utterance	10,888	10,962

Table 2: Statistics of the corpus.

How can we do topic labeling on these large-scale dialogues without much annotation efforts?

Central Idea

Noisy labeled data → learn policies with reward → refine
 data → learn better policies → refine more data

- State Representation Network
- Policy Network

Figure 1: Illustration of the model. SRN adopts a hierarchical LSTM to represent utterances and provides state representations to PN. Data labels are refined to retrain SRN and PN to learn better state representations and policies. The label y and the action a are in the same space.

 Local topic continuity: the same topic will continue in a few dialogue turns

$$r_{int} = \frac{1}{L-1} sign(a_{t-1} = a_t) \cos(\mathbf{h}_{t-1}, \mathbf{h}_t)$$

 Global topic structure: high content similarity within segments but low between segments

$$r_{delayed} = \frac{1}{N} \sum_{\omega \in X} \frac{1}{|\omega|} \sum_{X_t \in \omega} \cos(\mathbf{h}_t, \boldsymbol{\omega})$$
$$- \frac{1}{N-1} \sum_{(\omega_{k-1}, \omega_k) \in X} \cos(\boldsymbol{\omega}_{k-1}, \boldsymbol{\omega}_k)$$

Experiment

(a) Topic Segmentation (MAE and WI	(a)	Topic	Segmentation	(MAE and	WD
------------------------------------	-----	-------	--------------	----------	----

Model	SmartI	Phone	Clothing		
Model	MAE	WD	MAE	WD	
TextTiling(TT)	13.09	.802	16.32	.948	
TT+Embedding	3.59	.564	3.17	.567	
STM	4.37	.505	8.85	.669	
NL+HLSTM	8.25	.632	16.26	.925	
Our method	2.69	.415	2.74	.446	

(b) Topic Labeling (Accuracy)

Model	SmartPhone	Clothing		
Keyword Matching	39.8	31.8		
NL	51.4	39.0		
NL+LSTM	49.6	35.5		
NL+HLSTM	52.6	40.1		
Our method	62.2	48.0		

(a)

Madal	# Key	# Keywords per topic					
Model	3	6	9				
NL	45.0	51.4	48.0				
NL+HLSTM	46.6	52.6	48.8				
Our method	55.3	62.2	58.2				

(b)

SubSets	KM	1-NN
Utterances	3,503	7,385
NL	78.7	38.4
NL+HLSTM	78.6	40.2
Our method	79.0	54.2

(c)

Model Cettine	Segme	Labeling	
Model Setting	MAE	WD	Acc
$RL + r_{int}$	3.04	.449	59.5
$RL + r_{delayed}$	3.89	.490	60.4
$RL + r_{int} + r_{delayed}$	2.69	.415	62.2

Experiment

 Training converges well (loss, reward, accuracy, relative data change)

Strategy Optimization

- 1. Language Generation
- Dialogue Strategy
- 3. Ranking Optimization in Search
- ① Zaremba, Wojciech, and Ilya Sutskever. Reinforcement learning neural turing machines-revised. arXiv preprint arXiv:1505.00521 (2015).
- ② Xingxing Zhang and Mirella Lapata. Sentence Simplification with Deep Reinforcement Learning. EMNLP 2017.
- 3 Li et al. Deep Reinforcement Learning for Dialogue Generation. EMNLP 2016.
- 4 Peng et al. Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning. EMNLP 2017.
- 5 Zhang et al. Exploring Implicit Feedback for Open Domain Conversation Generation. AAAI 2018.
- ⑥ Fent et al. Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning. WWW 2018.

Reinforce Learning NTM (Zaremba et al. 2015)

Reinforce Learning NTM (Zaremba et al. 2015)

$$J(\theta) = \sum_{[a_1, a_2, \dots, a_T] \in \mathbb{A}^{\dagger}} p_{\theta}(a_1, a_2, \dots, a_T) R(a_1, a_2, \dots, a_T) = \sum_{a_{1:T} \in \mathbb{A}^{\dagger}} p_{\theta}(a_{1:T}) R(a_{1:T})$$

Language Generation (Zhang&Lapata, EMNLP2107)

$$\mathcal{L}(\theta) = -\mathbb{E}_{(\hat{y}_1, \dots, \hat{y}_{|\hat{Y}|}) \sim P_{RL}(\cdot|X)}[r(\hat{y}_1, \dots, \hat{y}_{|\hat{Y}|})]$$

$$\nabla \mathcal{L}(\theta) \approx \sum_{t=1}^{|\hat{Y}|} \nabla \log P_{RL}(\hat{y}_t | \hat{y}_{1:t-1}, X) [r(\hat{y}_{1:|\hat{Y}|}) - b_t]$$

High-level Dialogue Strategy (Peng et al. EMNLP2017)

Figure 2: Illustration of a two-level hierarchical dialogue policy learner.

Many Other Applications

- Negotiation ("Deal or No Deal? End-to-End Learning for Negotiation Dialogues")
- Language game ("Language Understanding for Text-based Games using Deep Reinforcement Learning")
- Information extraction ("Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning")

Reinforcement Learning in Search

- Usually multi-turn interactions
 - Could be natural sequential decision problems
 - ◆ For instance, search result diversification
- No direct supervision on which you should do at each step
- Only implicit feedbacks from user behavior data
 - Not necessarily as direct supervision
 - ◆ Good as **reward signals** for RL
- Totally dynamic systems (online training with real-time interactions)

Reinforcement Learning in Search

- Query reformulation (Nogueira & Cho, 2017; Buck et al.,
 ICLR 2018)
- Search results diversification (Xia et al., SIGIR 2017)
- Layout optimization (Oosterhuis & Rijke, SIGIR 2018)
- Ranking optimization (Feng et al., WWW 2018)
- Tutorial by Jun Xu & Liang Pang:
 - "Deep and reinforcement learning for information retrieval"

Ranking Opti. In Search (Feng et al., WWW2018)

 Multi-scenario Ranking: most large-scale online platforms or mobile Apps have multiple scenarios

Main-search

In-shop Search

Ranking Opti. In Search (Feng et al., WWW2018)

 Previous methods separately optimized each individual ranking strategy in each scenario

Ranking Opti. In Search (Feng et al., WWW2018)

Joint Optimization of Multi-scenario Ranking

Model Overview

65

 Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)

 Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)

 Communication Component: make the agents collaborate better with each other by sending messages

$$h_{t-1} = LSTM(h_{t-2}, [o_{t-1}; a_{t-1}]; \psi)$$

• **Private Actor**. Each agent has a private actor which receives local observations and shared messages, and makes its own actions.

$$a_t^{i_t} = \mu^{i_t}(s_t; \theta^{i_t}) \approx \mu^{i_t}(h_{t-1}, o_t^{i_t}; \theta^{i_t})$$

• Centralized Critic: an action-value function to approximate the future overall rewards obtained by all the agents

$$Q(s_t, a_t^1, a_t^2, \dots, a_t^N; \phi)$$

$$= r_t + Q(s_{t+1}, a_{t+1}^1, a_{t+2}^2, \dots, a_{t+1}^N; \phi)$$

Training Procedure

• The centralized critic is trained using the Bellman equation

$$L(\phi) = \mathbb{E}_{h_{t-1},o_t}[(Q(h_{t-1},o_t,a_t;\phi) - y_t)^2]$$

$$y_t = r_t + \gamma Q(h_t, o_{t+1}, \mu^{l_{t+1}}(h_t, o_{t+1}); \phi)$$

• The private actor is updated by maximizing the expected total rewards with respect to the actor's parameters

$$J(\theta^{i_t}) = \mathbb{E}_{h_{t-1},o_t}[Q(h_{t-1},o_t,a;\phi)|_{a=\mu^{i_t}(h_{t-1},o_t;\theta^{i_t})}]$$

 Jointly optimize the ranking strategies in two search scenarios in Taobao

How Training Happens

- Step 1: Start from a base ranking algorithm
- Step 2: Collect user feedback data with the current ranking system
- **Step 3**: Train our MA-RDPG algorithm to obtain new ranking weights (i.e., the action of the agents by deterministic policy)
- Step 4: Apply the new weights to the online ranking systems
- Goto Step 2 until convergence

- The observations, actions, rewards for the agents:
 - ♦ **Observations**: the features of each ranking scenarios
 - the attributes of the customer (age, gender, purchasing power, etc.)
 - the properties of the customer's clicked items (price, conversion rate, sales volume, etc.)
 - the query type and the scenario index (main or in-shop search)

- The observations, actions, rewards for the agents:
 - ◆ Actions: the weight vector for the ranking features
 - Continuous actions, deterministic policies

$$a_t^{i_t} = \mu^{i_t}(s_t; \theta^{i_t}) \approx \mu^{i_t}(h_{t-1}, o_t^{i_t}; \theta^{i_t})$$

- The observations, actions, rewards for the agents:
 - ◆ Rewards: user feedback on the presented product list
 - if a purchase behavior happens, reward = the price of the bought product
 - if a click happens, reward = 1
 - if there is no purchase nor click, reward = -1
 - if a user leaves the page without buying any product, reward = -5.

Experiment Results

GMV gap evaluated on an online Taobao platform

Relative improvement against EW+EW

day	EW + L2R		L2R + EW		L2R + L2R			MA-RDPG				
uay	main	in-shop	total	main	in-shop	total	main	in-shop	total	main	in-shop	total
1	0.04%	1.78%	0.58%	5.07%	-1.49%	3.04%	5.22%	0.78%	3.84%	5.37%	2.39%	4.45%
2	0.01%	1.98%	0.62%	4.96%	-0.86%	3.16%	4.82%	1.02%	3.64%	5.54%	2.53%	4.61%
3	0.08%	2.11%	0.71%	4.82%	-1.39%	2.89%	5.02%	0.89%	3.74%	5.29%	2.83%	4.53%
4	0.09%	1.89%	0.64%	5.12%	-1.07%	3.20%	5.19%	0.52%	3.74%	5.60%	2.67%	4.69%
5	-0.08%	2.24%	0.64%	4.88%	-1.15%	3.01%	4.77%	0.93%	3.58%	5.29%	2.50%	4.43%
6	0.14%	2.23%	0.79%	5.07%	-0.94%	3.21%	4.86%	0.82%	3.61%	5.59%	2.37%	4.59%
7	-0.06%	2.12%	0.62%	5.21%	-1.32%	3.19%	5.14%	1.16%	3.91%	5.30%	2.69%	4.49%
avg.	0.03%	2.05%	0.66%	5.02%	-1.17%	3.09%	5.00%	0.87%	3.72%	5.43%	2.57%	4.54%

Recent results online: MA-RDPG gains 3% improvement against L2R+L2R

Experiment Results

 Learning process of the loss function, critic value and GMV gap

Experiment Results

Learning process of the loss function, critic value and GMV gap

Summary

- Search and Reasoning: model structure, text structure, reasoning path, etc.
- Instance Selection: unlabeled data selection, data denoising, noisy label correction
- Strategy Optimization: ranking, dialogue strategy, language game, negotiation, text compression, language generation
- How RL can facilitate NLP and search

Messages and Lessons

- Keys to the success of RL in NLP
 - ◆ Formulate a task as a **natural sequential decision** problem where current decisions affect future ones!
 - ◆ Remember the **nature** of **trial-and-error** when you have no access to full, strong supervision.
 - ◆ Encode **domain expertise** or **prior knowledge** of the task in rewards.
 - ◆ Applicable in many weak supervision settings.

Messages and Lessons

- Lessons we learned
 - ◆ A warm-start is important, using pre-training (due to too many spurious solutions and too sparse rewards)
 - Very marginal improvements to full supervision settings
 - Very marginal improvements for large action space problems (e.g., language generation)
 - Patient enough to the training tricks and tunings

Future Directions

- Hierarchical DRL: with planning ability
- Inverse DRL: estimate rewards from data
- Sample-efficiency: finding optimal solutions more efficiently

Thanks for Your Attention

- Minlie Huang, Tsinghua University
- aihuang@tsinghua.edu.cn
- http://coai.cs.tsinghua.edu.cn/hml

