Encoding Syntactic Knowledge in Neural Networks
for Sentiment Classification

MINLIE HUANG*, QIAO Q|AN*, and XIAOYAN ZHU, State Key Laboratory of Intelligent
Technology and Systems, National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University, Beijing 10084, China

Phrase/Sentence representation is one of the most important problems in natural language processing. Many
neural network models such as Convolutional Neural Network (CNN), Recursive Neural Network (RNN),
and Long Short-Term Memory (LSTM) have been proposed to learn representations of phrase/sentence,
however, rich syntactic knowledge has not been fully explored when composing a longer text from its shorter
constituent words. In most traditional models, only word embeddings are utilized to compose phrase/sentence
representations, while the syntactic information of words is yet to be explored. In this article, we discover
that encoding syntactic knowledge (part-of-speech tag) in neural networks can enhance sentence/phrase
representation. Specifically, we propose to learn tag-specific composition functions and tag embeddings in
recursive neural networks, and propose to utilize POS tags to control the gates of tree-structured LSTM net-
works. We evaluate these models on two benchmark datasets for sentiment classification, and demonstrate
that improvements can be obtained with such syntactic knowledge encoded.

CCS Concepts: ® Computing methodologies — Neural networks; Lexical semantics;

Additional Key Words and Phrases: Neural networks, recursive neural network, long short-term memory,
deep learning, representation learning, sentiment classification, sentiment analysis

ACM Reference Format:

Minlie Huang, Qiao Qian, and Xiaoyan Zhu. 2017. Encoding syntactic knowledge in neural ntworks for
sentiment classification. ACM Trans. Inf. Syst. 35, 3, Article 26 (June 2017), 27 pages.

DOL: http://dx.doi.org/10.1145/3052770

1. INTRODUCTION

Phrase/sentence representation, which represents a phrase or sentence with a real-
valued, continuous vector, is a fundamental problem in natural language processing.
Representation learning for text has been shown to advance many Natural Language
Processing (NLP) tasks such as paraphrase detection [Socher et al. 2011a], sentiment
analysis [Socher et al. 2011b], question answering [Dong et al. 2015], text genera-
tion [Sutskever et al. 2014], and many more. Recently, many neural network models
have been proposed for learning phrase/sentence representations, and these methods
generically fall into three categories: bag-of-words models, sequence models, and tree-
structured models.

“The two authors contribute equally.

This work was partly supported by the National Basic Research Program (973 Program) under grant No.
2013CB329403, the National Science Foundation of China under grant No. 61272227/61332007, and the
Beijing Higher Education Young Elite Teacher Project.

Authors’ addresses: M. Huang, Q. Qian, and X. Zhu, State Key Laboratory of Intelligent Technology
and Systems, National Laboratory for Information Science and Technology, Department of Computer
Science and Technology, Tsinghua University, Beijing 10084, China; emails: aihuang@tsinghua.edu.cn,
qianqiaodecember29@126.com, zxy-dcs@tsinghua.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1046-8188/2017/06-ART26 $15.00

DOI: http://dx.doi.org/10.1145/3052770

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

http://dx.doi.org/10.1145/3052770
http://dx.doi.org/10.1145/3052770

26:2 M. Huang et al.

In bag-of-words models, phrase and sentence representations are usually aver-
aged over constituent phrase representations, and word order is constantly ignored
[Landauer and Dumais 1997; Foltz et al. 1998]. The shorter text (e.g., word) is rep-
resented by a continuous vector that can be obtained via the CBOW [Mikolov et al.
2013b] or Skip-gram models [Mikolov et al. 2013a], or Glove [Pennington et al. 2014],
or other approaches. Then, the representation of a phrase or sentence is an average
(sometimes weighted average) of all words’ vectors.

In contrast, sequence models build sentence representations as an order-sensitive
function of the sequence of tokens [Elman 1990; Mikolov 2012]. Many neural network
models fall into this line. Convolutional Neural Network (CNN) defines convolution
operations from the beginning of a sentence to the end [Kalchbrenner et al. 2014]. The
convolution layer firstly concatenates consecutive words’ vectors and then operates
convolution filters to the concatenated vector; the pooling layer takes the maximum
or average of convoluted input vectors as the final or intermediate representation of
the input text. Recurrent Neural Network (ReNN) models the units of a sequence
by introducing a recurrent connection, where the current hidden state is determined
by the previous hidden state and the current word input. For very long sequences,
ReNN defines a very deep structure, and hence suffers from the gradient vanishing or
explosion problems. The vanishing gradients were successfully addressed by Hochreiter
and Schmidhuber [1997], where the Long Short-Term Memory (LSTM) architecture
was proposed. Since LSTM is resistant to the vanishing gradient problem, the model
has been commonly used to represent sentences, paragraphs, and documents [Tang
et al. 2015; Li et al. 2015].

Tree-structured models compose phrase or sentence representation from its con-
stituent phrases according to a tree structure. A recursive autoencoder network (Re-
cursive Neural Network (RNN)) [Socher et al. 2011a, 2011b; Dong et al. 2014; Qian
et al. 2015] defines the phrase composition process according to a parsing tree (or rarely
binary trees generated by greedy algorithms), and the tree structure is grown up in
a bottom-up manner where the root node corresponds to the sentence representation.
Such recursive structures can be stacked to form a multilayer RNN, which is termed
deep RNN [Irsoy and Cardie 2014]. LSTM can also be accommodated with tree struc-
tures, that is, tree-LSTM [Zhu et al. 2015; Tai et al. 2015]. With slight modifications
on the memory state, input, output, and forget gates, tree-LSTM can work better than
sequential LSTMs.

In the aforementioned models, few have fully explored the syntactic knowledge for
phrase or sentence representation. Though the parsing tree structure is used to lead
the composition process, the part-of-speech tag, and the relationship between the child
and parent nodes have not been investigated. In this article, we aim at learning
sentiment-favorable representations to improve the performance of sentiment classi-
fication. We define sentiment-favorable representation as what is learned by a proper
way of expressing sentiment, and is usually optimized with a sentiment-specific loss.
Most existing methods for learning sentiment-favorable representation are to combine
a sentiment-specific loss with the original loss, and then back-propagate the supervi-
sion to low-level layers [Tang et al. 2014; Liu et al. 2015]. However, in deep structures,
the supervison from the output layer may vanish gradually when it is propagated to
lower layers. In Socher et al. [2011b, 2012, 2013b], the sentiment-specific cross-entropy
loss is attached to every node of a parsing tree such that much more supervision can be
used for learning representations, but unfortunately, this requires heavy annotation on
all subphrases of a parsing tree. In spite of the success of these models, they have not
fully utilized rich syntactic knowledge (for instance, part-of-speech tags) of all nodes in
a parsing tree. We believe that better representations may be obtained if the recursive
structure can encode more syntactic knowledge at all layers.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:3

(the movie is very interesting / S)

(the movie / NP) (is very interesting / VP)

(the /DT) (movie/NN) (is /VBZ) (very interesting / ADJP)

(very / RB) (interesting / JJ)

Fig. 1. The parse tree for the sentence “The movie is very interesting.” The part-of-speech tags ({S, NP, VP,
DT, NN, VBZ, ADJP, RB, JJ}) are attached to the words/phrases with a slash symbol.

The idea of using syntactic knowledge for phrase composition is motivated by the
running example shown in Figure 1. First, the composition means for the noun phrase
“the movie/ NP” should be different from that for the adjective phrase “very interesting/
ADJP” since the two phrases are syntactically quite different. More specifically to
sentiment analysis, a noun phrase is much less likely to express sentiment than an
adjective phrase. Accordingly, our idea is to learn a tag-specific composition functions
or weights for phrase composition. For instance, we design a function for composing
noun phrase (NP) and another one for adjective phrase (ADJP), or we learn a weight
for NP phrases and another weight for ADJP phrases and then leverage these weights
for phrase composition.

Second, when composing the adjective phrase “very interesting/ADJP” from the left
node “very/RB” and the right node “interesting/J<J,” the right node is obviously more
important than the left one in expressing sentiment. The right node “interesting/JJ”
apparently contributes more to sentiment expression. To address this issue, we propose
to learn an embedding vector for each part-of-speech tag, and then let the tag vector
participate in the composition process. For instance, we learn tag embedding vectors
for DT, NN, RB, JJ, ADJP, NP, etc., and the tag vectors are then used in composing the
parent’s vector. In this manner, information about part-of-speech tags can be encoded
in the composition process.

To summarize, our contributions are as follows:

—We propose the idea of encoding syntactic knowledge in neural networks. One way
is to learn tag-specific composition functions or weights for different part-of-speech
tags; the other way is to learn tag embedding vectors and then let the tag vectors
participate in the composition process.

—We propose Tag-Guided Recursive Neural Network (TG-RNN), which employs tag-
specific composition functions for different POS tags. We propose to learn tag em-
bedding vectors and combine them in RNN and RNTN (Recursive Neural Tensor
Network). The corresponding models are Tag Embedded RNN (TE-RNN) and Tag
Embedded RNTN (TE-RNTN), which both leverage the POS tags of child nodes
when generating the vector of parent nodes.

—We study the effectiveness of employing part-of-speech tags in tree-structured LSTM.
One way is to learn tag-specific weights to control the gates of LSTM and the resulting
model is Tag Weighted LSTM (TW-LSTM). We can see that although the POS tag
has been largely abstracted, this model is superior or comparable to many popular
models such as CNNs and RNNs. The other way is to learn the embedding vector
of POS tags and let tag embeddings participate in the control of LSTM gates. The
resulting model, Tag Embedded LSTM (TE-LSTM), is superior to all other models.

—Although these models are yet very simple, the proposed models are efficient and
effective. The models are very compact, and the scale of the parameters is well
controlled. The evaluation on two benchmark datasets for sentiment classification
show that all the proposed models are superior to their counterparts.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:4 M. Huang et al.

The rest of the article is organized as follows. We survey related work in Section 2.
We present how to encode syntactic knowledge in RNN in Section 3, and in LSTM in
Section 4. Experiments and detailed analysis are presented in Section 5. Our work is
summarized in Section 7.

2. RELATED WORK

The traditional way for phrase/sentence representation is bag-of-words representa-
tion, which adopts a sparse vector over a large vocabulary (usually thousands of lexical
entries). This type of representation has been widely used in many NLP tasks, in-
cluding sentiment analysis [Pang and Lee 2008], however, it also suffers from the
sparsity issue particularly for short text, and is not able to encode corpus-level con-
text information. Thanks to the renaissance of neural network models, representing
word/phrase/sentence with a low-dimensional dense vector has been substantially ad-
vanced in recent years.

Representing words with real-valued, dense vectors is first approached by the Neural
Language Model [Bengio et al. 2003]. Similar to the same idea, CBOW [Mikolov et al.
2013a] and Skip-gram [Mikolov et al. 2013b] introduce a simpler network structure but
make computation more efficient to enable billions of samples feasible for training. The
two models either predict the contextual words given a word, or predict a current word
given its neighboring words. Although the models yield very simple neural network
structures, the generated word embeddings have been shown to be very effective in
various tasks, well capable of maintaining language regularities, and soon become
prevalent in serving as input vectors to neural network models. Unlike these prediction-
based methods, Glove is count based [Pennington et al. 2014], which is a global bilinear
regression model that is purely based on corpus-level cooccurrence statistics.

Once we are able to represent words effectively, the next issue is the semantic
composition problem, which aims to obtain representations for a longer text from its
short segments. In many previous works, a phrase vector is usually obtained by aver-
age [Landauer and Dumais 1997; Foltz et al. 1998], addition, element-wise multiplica-
tion [Mitchell and Lapata 2008], or tensor product [Smolensky 1990] of word vectors. In
addition to using vector representations, matrices can also be used to represent phrases
and the composition process can be done through matrix multiplication [Rudolph and
Giesbrecht 2010; Yessenalina and Cardie 2011].

While there are so many various methods for semantic composition, in this survey,
we are particulary focusing on those methods that are based on typical neural network
models. Sequence models, including CNN, ReNN, and LSTM, are widely studied for
representing phrases and sentences. CNN usually constructs sentence presentations
by defining convolution operations over adjacent words from the beginning to the end
of a sentence [Kim 2014; Kalchbrenner et al. 2014; Lei et al. 2015]. The convolution
layer concatenates vectors of consecutive words, and operates convolution filters on
the concatenated vector. A pooling layer simply takes the maximum or average of
vectors from the preceding layer as the final representation of given texts. ReNN
models a sequence of words with a recurrent connection, where the representation
up to the current position is dependent on the previous word’s representation and
the current word vector, and the final representation is obtained at the end of the
sequence. However, for long sentences, ReNN becomes difficult to train due to the
vanishing gradient problems. An improved version of ReNN is Gated Recurrent Units
(GRUs) [Chung et al. 2014], which introduce controlled gates into the network. By
introducing additional memory layers and input/output/forget gates, LSTM is more
competitive to model long-range dependency than ReNN and GRU, becoming prevalent
for representing sentences, paragraphs, and documents [Tang et al. 2015; Li et al. 2015].
Many variants of LSTM have been proposed, such as Bidirectional LSTM, which models

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:5

sentences in normal and reversed order separately, and deep LSTM, which stacks
multiple LSTM layers together [Graves et al. 2013].

Tree-structured models usually compose a longer text from its short segments re-
cursively according to a tree structure, including RNN and its variants such as RNTN
and matrix vector RNN (MV-RNN) [Socher et al. 2011a, 2011b, 2012, 2013b], and
tree-structured LSTM [Tai et al. 2015; Zhu et al. 2015]. RNN defines a recursive struc-
ture over a parsing tree, and then composes phrase representation recursively with a
composition function in a bottom-up way. Adaptive Recursive Neural Network [Dong
et al. 2014] uses a weighted sum of multiple composition functions during the compo-
sition process, while Qian et al. [2015] encodes syntactic knowledge in the composition
function of RNN. Several recursive structures can be stacked together to form a deep
structure [Irsoy and Cardie 2014]. LSTM can also be used to model a parsing tree of a
sentence [Zhu et al. 2015; Tai et al. 2015], by making slight modifications of memory
states and controlled gates over tree structures.

Some studies exist for learning sentiment-favorable representations. A typical way
is to use the end-to-end learning strategy where a sentiment-specific loss is combined
with the original loss and the combined loss is then back-propagated into low-level
layers. For instance, Tang et al. [2014] proposes to learn sentiment-specific word em-
bedding on top of the C&W model [Collobert et al. 2011; Collobert and Weston 2008].
Severyn and Moschitti [2015b] shows that pretraining using weakly supervised data
(distant supervision) to initialize the parameters of a CNN network can benefit the
learning of sentiment-favorable representation and can result in state-of-the-art accu-
racy for sentiment analysis. Chen et al. [2017] demonstrates that sentence type is a
factor of sentence-level sentiment classification and classifying sentences of each type
separately leads to the performance improvement. Liu et al. [2015] proposes to learn
sentiment-favorable representation of sentences/documents on top of stacked denoising
autoencoders in the setting of domain adaptation. In these works, sentiment-specific
representation learning is fully driven by sentiment-specific loss functions, however,
rich grammatical or syntactical details in the language have been largely neglected.

The employment of syntactic information in neural networks is still in its infancy. In
Socher et al. [2013a], the part-of-speech tag of child nodes is considered for combining
the processes of both phrase composition and sentence parsing, with a purpose of im-
proving parsing performance. In Hermann and Blunsom [2013], the authors designed
composition functions according to the combinatory rules and categories in CCG gram-
mar. However, only marginal improvement against Naive Bayes was reported. Our
work presented in Qian et al. [2015] proposed a more elaborated way to encode more
syntactic knowledge in all layers of a recursive neural network. In this article, we
have substantially extended the work in Qian et al. [2015], and study how syntactic
knowledge (part-of-speech tag) can help to learn sentiment-favorable representation
with recursive neural networks and tree-structured LSTM. Two means for encoding
syntactic knowledge have been studied: one way is to learn tag-specific weights or func-
tions, and the other way is to learn tag embeddings during the composition process.
These proposed models have been shown to be competitive against their counterparts.

In order to learn sentiment-favorable presentation for longer texts, we believe that
sentiment lexicons [Hu and Liu 2004; Wilson et al. 2005] are quite important since
such resources provide the prior polarity of a word. Semantic composition of a long text
will definitely benefit from such prior knowledge. There are a few works on automatic
construction of such lexicons [Severyn and Moschitti 2015a; Chen and Skiena 2014;
Vo and Zhang 2016], however, to the best of our knowledge, there is still not much
work reported on how such lexicon resources can be seamlessly integrated with neural
networks. Teng et al. [2016] approaches sentiment classification as a weighted sum of

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:6 M. Huang et al.

softmax

is very interesting

softmax

softmax

very interesting

Fig. 2. The example process of vector composition in recursive neural networks. The vector of node “very
interesting” is composed from the vectors of node “very” and node “interesting.” Similarly, the node “is very
interesting” is composed from the phrase node “very interesting” and the word node “is.”

the prior polarity of each term in a sentence and the weights are learned by neural
network.

3. ENCODING SYNTACTIC KNOWLEDGE IN RECURSIVE NEURAL NETWORKS
3.1. Preliminaries

In recursive neural models, the vector of a longer text (e.g., sentence) is recursively
composed from those of its shorter segments (e.g., words or phrases). To compose a
sentence vector through word/phrase vectors, a tree structure is usually required,
which can be obtained by a parser. The composition process is exemplified in Figure 2.
The leaf nodes represent words and interior nodes represent phrases. Vectors of interior
nodes are computed recursively by composing child nodes’ vectors. Particularly, the root
vector is regarded as the sentence representation.
More formally, the representation vector ; € R? for node i is calculated via

hi = f(g(hi. 7)), @

where hﬁ and /] are the left and right child vectors, g is a composition function, and fisa
nonlinearity function, usually tanh. Different recursive neural models mainly differ in
applying different composition functions. The most traditional recursive neural model
takes the following function:

A
(i 1) = W[" } "y @

where W € R%¥?% is a composition matrix and b is a bias vector. And the composition
function for RNTN is as follows:

B nal B KL
g(hf,h§)=[h;}T[1~d][h;]+W[h;]+b, 3)

where W and b are defined as previously, and 7' 19 ¢ R2dx2dxd jg the tensor that defines
multiple bilinear forms.

The vectors are used as feature inputs to a softmax classifier. The posterior proba-
bility over class labels on a node vector 4; is given by

y; = softmax(Wgh; + b;). 4)

The parameters in these models include a word table L, a composition matrix W
in RNN, and W and T4 in RNTN, and a classification matrix W, for the softmax
classifier.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:7

softmax

is very interesting / VP

softmax

is/ VBZ

softmax softmax

very / RB interesting / JJ

Fig. 3. The example composition process of TG-RNN. The vector of a phrase “very interesting” is composed
with highlighted gqpjp and “is very interesting” with gyp. The composition function is chosen according to
the part-of-speech tag.

The idea of encoding syntactic knowledge in RNN is inspired by the fact that
words/phrases of different part-of-speech tags play different roles in semantic com-
position. As discussed in the Introduction, a noun phrase (e.g., a movie/ NP) may be
composed in a different way from that for a verb phrase (e.g., love movie/VP). Fur-
thermore, when composing the phrase a movie/ NP, the two child words, a/DT and
movie/ NN, may play different roles in the composition process. However, the tra-
ditional RNN models neglect such syntactic information, though the model indeed
employs the parsing structure of a sentence.

We have two approaches to improve the composition process by leveraging tags on
parent nodes and child nodes. One approach is to use different composition matrices
for parent nodes with different tags such that the composition process could be guided
by phrase type, for example, the matrix for “NP” is different from that for “VP.” The
other approach is to introduce “tag embedding” for words and phrases, for example, to
learn tag vectors for “NP, VP, ADJP,” etc., and then integrate the tag vectors with the
word/phrase vectors during the composition process.

3.2. Tag Guided Recursive Neural Network

We propose Tag Guided Recursive Neural Network (TG-RNN) to model the influence
of the tag of a parent phrase during the composition process. The model chooses a
composition function according to the part-of-speech tag of a phrase. For example,
since “the movie” has a tag of NP, “very interesting” has a tag of ; the two phrases have
different composition matrices.

More formally, we design composition functions g with a factor of the part-of-speech
tag of a parent node. The composition function then becomes

l
1) = (1) = Wi 1 |t)

where ¢ is the tag for node i (a word or phrase), and W, and b, are the parameters
of function g, similar to those in Equation (2). In other words, phrase nodes with
different tags have their own composition functions such as gyp, gvp, and so on. There
are totally 2 composition functions in this model where % is the number of phrase
tags. When composing a parent vector from its child vectors, a function is chosen from
the function pool according to the tag of the parent node. The process is depicted in
Figure 3. We term this model Tag guided RNN; TG-RNN for short.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:8 M. Huang et al.

very / RB interesting / JJ

Fig. 4. The composition process of TE-RNN. There is a tag embedding table, storing vectors for all POS tags.
The phrase vector “very/RB interesting / JJ” is composed from the vectors for “very/ RB” and “nteresting/ JJ,”
and the tag vectors for RB and JJJ.

But some tags have few occurrences in the corpus. It is hard and meaningless to train
composition functions for those infrequent tags. So we simply choose top % frequent tags
and train k& composition functions. A common composition function is shared across
phrases with all infrequent tags. The value of £ depends on the size of the training set
and the occurrences of each tag. Specially, when & = 0, the model is the same as the
traditional RNN.

3.3. Tag Embedded Recursive Neural Network/Tensor Network

To model the effect of the part-of-speech tags of child nodes on semantic composition, we
propose tag embedded recursive neural network (TE-RNN) and tag embedded recursive
neural tensor network (TE-RNTN). As mentioned previously, the tag of a phrase indeed
influences how the phrase is composed from its segments. However, some phrases with
the same tag should be composed in different ways. For example, “is/ VB interesting / JJ”
and “like/ VB swimming/NN” both have the same VP tag. But it is not reasonable to
compose the two phrases using the previous model because the part-of-speech tags of
their children are quite different. If we use different composition functions for children
with different tags like TG-RNN, the number of tag pairs will amount to as many as
k x k, which makes the models infeasible due to too many parameters.

In order to capture the compositional effects of the tags of child nodes, an embedding
e; € R% is created for each tag ¢, where d, is the dimension of the tag vector. The
tag vector and phrase vector are concatenated during composition as illustrated in

Figure 4.
Formally, the phrase vector is composed by the function
:
g eq W o) = W 2"‘ +b, ®6)

where tf and ¢/ are tags of the left and the right nodes, respectively, eyl and ey are
tag vectors, and W e R%*2%+2d) i5 the composition matrix. We term this model Tag
embedded RNN; TE-RNN for short.

Similarly, this idea can be applied to RNTN [Socher et al. 2013b]. In RNTN, the
tag vector and the phrase vector can be interweaved together through a tensor. More
specifically, the phrase vectors and tag vectors are multiplied by the tensor, as follows:

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:9

g ey i ey)

hﬁ hﬁ hﬁ (7)
€yl a) | € €y
i T i Wi G b,
K T e | T
ey ey ey

where the variables are similar to those defined in Equations (3) and (6). We term this
model Tag embedded RNTN; TE-RNTN for short.

The phrase vectors and tag vectors are used as input to a softmax classifier, giving
the posterior probability over labels via the following equation:

y; = softmax <Ws[:i i| + bs) . (8)
ti

3.4. Model Training

Let y; be the gold-standard sentiment distribution for phrase j, and y; be the pre-
dicted distribution, which is given by either Equation (4) or (8). The learning goal is to
minimize the cross-entropy error between y; and y; for all nodes. The loss function is
defined as follows:

M
LO)Y ==Y yrlogy} + AlI0ll3, 9)

Jj m=1

where M is the total number of classes (e.g., positive and negative), A is the weight for
the Lo-regularization term, and 6 is the parameter set.

The parameters for our models are as follows:

TG-RNN: There are k composition matrices for top & frequent tags, which are defined
as W, € Rk*dx2d_The original composition matrix W is occupied for all infrequent tags.
As a result, the parameter set of TG-RNN is 6 = (L, W, W;, W,) where L is the word
embedding table, which will be fine-tuned during training.

TE-RNN: The parameters include the tag embedding table E, which contains all the
embeddings for part-of-speech tags for words and phrases; the matrix W e R?x(2d+2d)
in Equation (6), and the weight matrix of the softmax classifier W, € RN*@+d in
Equation (8). Thus, the parameter set of TE-RNN is 6 = (L, E, W, W;).

TE-RNTN: This model has one more tensor T' € R2d+2d)x(2d+2d.)xd than TE-RNN, as
presented in Equation (7). The parameter set of TE-RNTN is 6 = (L, E, W, T', W;).

4. ENCODING SYNTACTIC KNOWLEDGE IN LSTM
4.1. Preliminaries

LSTM has been very popular due to its capability to model long-range dependency
in sequential data. Zhu et al. [2015] and Tai et al. [2015] proposed that LSTM can
also be applied to tree-structured data, for instance, parsing trees of natural language
sentences. Such LSTM models are termed Tree-LSTM in this article.

The example process of a Tree-LSTM can be seen from Figure 5. Although Tree-
LSTM can be applied to N-ary trees, for simplicity, we will present the bottom-up
composition process with a binary tree. As depicted, there are hidden representations
for each child phrase; say, hlj for the left phrase “is” and £’; for the right phrase “very

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:10 M. Huang et al.

hy: phrase rep
¢ memory state
o, : output gate

is very interesting

+

E i - input gate

fi : left forget gat ﬂ fi : right forget gate

is very interesting

Fig. 5. The phrase composition process of Tree-LSTM. There are input, forget, and output gates in LSTM.
Each node is associated with a phrase representation vector and memory state vector. © denotes element-wise
multiplication. The variable symbols are also presented in the figure.

interesting.” A temporary representation can be obtained immediately, as follows:

!
W:f(W[Z{]H)). (10)
J

In addition to the hidden state &; for each phrase j, there is a memory state vector
c¢j in Tree-LSTM. The memory state vector of phrase j can be obtained via

cj=ijQui+ fiod + fjod, (11

where cé- /¢ € R? are memory state vectors for the right/left child phrase, which
can be obtained recursively; the operator © denotes element-wise multiplication; and
i, Jl fi € R? are the input gate, the left forget gate, and the right forget gate, respec-
tively. d is the dimension of word embeddings.

The phrase representation 4; is then computed as follows:

hj=0j®f(Cj), (12)

where o; € R? is the output gate.
The input, forget, and output gates can be computed via the following equations:

. K,
Lj=Si|:hé:|, (13)
! 1 _hl'
T r _hl'-
fj =S% hé , (15)
R
OjZSo|:h§j|, (16)

where S;, S%, rf S, € R¥?d gre weight matrices to be learned in Tree-LSTM.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:11

hy: phrase repr {
¢;: memory state + o= WQ[VP]
is very interesting / VP
+

[@] fr=wiADJP]

fl=wyvsz][@ |

is / VBZ veryinteresting / ADJP

Fig. 6. The composition process in Tag Weighted LSTM. The information input to the gates is simply looked
up from three global weight matrices according to the corresponding part-of-speech tags. The variable
symbols are also presented in the figure.

For leaf nodes that have no child phrase, the representation of such nodes (z;) and
the memory state vector (c;) can be computed via

C; = Wuvj, (17)

hj = o (S¥v;) @ fle), (18)

where W, Sleal ¢ Raxd gre parameters to learn, and v; is the word embedding vector.

Our goal is to leverage syntactic knowledge to learn sentiment-favorable represen-
tation for classification. Let us revisit the motivating example: “the/ DT movie/ NN
is/ VBZ very/ RB interesting / JJ.” Obviously, in this example, the adjective and adjunc-
tive words play a critical role in expressing sentiment. Therefore, we believe that such
part-of-speech tags may be useful in learning sentiment-favorable representations.
This inspires us to ulitilize part-of-speech tags to control information flowing through
the input, forget, and output gates of Tree-LSTM.

More specifically, we design three ways for this purpose: First, we learn a global
weight matrix for each specific tag, where the weight matrix controls the gates in LSTM;
second, we learn an embedding vector for each tag, and then use tag embeddings to
control the gates in LSTM,; third, since part-of-speech tags have been overabstracted,
we combine tag embeddings and phrase representations to control the gates.

4.2. Learning Tag-specific Gate Weights: Tag Weighted LSTM

A simple idea is to use the part-of-speech tag of each word/phrase to directly control
the gates in LSTM. This idea is illustrated in Figure 6.

We design three global weight matrices for the input, forget, and output gates, re-
spectively. Instead of feeding the hidden presentation of child nodes to the gates, we
directly look up the weight matrices according to the tag of a child node. This simple
strategy can be clearly seen in the following equations:

ij =o(W,; [tj]), (19)
fi = o(WelED, (20)
£r = o (W), 21)

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:12 M. Huang et al.

0j = U(Wo[tj]), (22)

where W;, Ws, W, € R¥™ are the weight matrices for the input gate, forget gate, and
output gate, respectively. W¢] is to fetch a column vector corresponding to tag ¢ where
each column in these matrices (W;, W, W,) corresponds to the weights of a POS tag. n,
is the number of POS tags. ¢; is the POS tag for node j, and tj- and t; are the POS tags
for the left child and right child of node j, respectively.

Subsequently, the memory state c; and the hidden representation of a phrase &;
could be calculated with those gates, as shown in Figure 6. Formally, we have

¢; = (Wil © wj + o (W[tt]) ©

(23)
+o(Wr[tj]) o .

h; = o(W,lt;]) © tanh(c;). (24)

We can clearly see the difference between the traditional Tree-LSTM and this new
LSTM: in traditional Tree-LSTMs, the input, forget, and output gates are calculated
with hidden representations of child nodes, while the new model simply uses the POS
tag to control the gates.

4.2.1. Modeling Child-Parent Association. When composing a parent phrase from its child
phrases, the tags of both child and parent phrases are influential, particularly in
learning sentiment-favorable representations. For instance, “interesting movie/NN” is
a noun phrase composed from an adjective word “interesting/JJ” and a noun word
“movie/NN.” “not good/ADJP” is an adjective phrase composed from a negation word
“not/RB” and an adjective word “good/JdJ.” The former example shows the parent phrase
can be determined by the adjective subphrase, while the latter example depends on
both subphrases. In other words, the same tag (e.g., JJ) may play a different role in
different types of parent phrases (NN vs. ADJP). Therefore, it is necessary to model the
syntactic association between the child phrase and parent phrase, for instance, JJ-NN,
JJ-ADJP, RB-ADJP, etc.

We propose to model the association between the child phrases and the parent phrase
as follows: we design a weight matrix (W) for child phrases and another weight matrix
(Wp,) for parent phrases; and then use the two matrices to control the forget gates of
the child phrases. Formally, we have

fi = o (WG] + Wy, l21), (25)

fi = o (Wrl]+ Wy, lt,)), (26)

where Wy, Wy, < R*™ are the weight matrices to control the forget gates of a child
phrase and a parent phrase, respectively, and té, t;,t; are the POS tags of the left child,
right child, and parent phrase, respectively.

4.3. Learning Gate Weights with Tag Embeddings: Tag Embedded LSTM

In the previous models, we simply learn global weights for each tag. Similar to Tag
Embedded RNN, a better way is to learn an embedding vector for each tag, and let the
tag embeddings participate in the control of the LSTM’s gates. Following this idea, a
tag vector E[t] € R* will be learned for each tag ¢, where d, is the dimension of the tag
vector, usually far less than that of word embeddings (d). The tag embeddings are then
taken as input to the gates of LSTM, as follows:

ij =G(UiE[tj]), 27

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:13

fl=o(UEI)), (28)
i = o(UEIt})), (29)
o; = o(U,Elt;]), (30)

where E € R%*™ is the tag embedding table (each column corresponds to a tag vector)
to be learned, d, is the dimension of tag embedding, n; is the number of tags, and
U;,Us, U, € R¥% are the weight matrices similar to conventional LSTMs.

4.3.1. Learning Gate Weights with Parent Phrase. Similar to Section 4.2.1, we propose to
take into account the association between child phrases and parent phrase. In this
setting, the embedding vector of a parent phrase (E[¢;]) is concatenated by the vector
of a child phrase (£ [t}] or E[t’]), and the concatenated vector is then taken as input to
the left or right gates. This can be formally stated as follows:

Elt)]
fl=0o (U{E[tjl]) : (31)
J

r— o (v, B (32)
fi=0(Us Elr)

J
where U, € R¥%% is the weight matrix for the right and left gate, respectively.

4.3.2. The Difference between LW-LSTM and TE-LSTM. TW-LSTM adopts global gate
weights W € R¥™ where d is the word embedding dimension (usually 300), and n,
is the number of tags (70 in this article). Hence, there is a d-dimensional vector to rep-
resent each tag, which is overparameterized since the total number of tags is 70. For
those infrequent tags, the parameters are not well optimized due to the lack of data.
For instance, there are 28 tags that appear less than 300 times on the SST datasets
(see the experiments). Thus, for those infrequent tags, 300-dimensional vectors are not
easy to be fully trained.

In TE-LSTM, we design weight matrices Uy, U;, U, € Rd*% wwhich are shared across
different tags, and a global tag embedding matrix E € R**™ which is a lookup table
for all tags. The number of parameters of this part in TE-LSTM (~300 * 20 + 70 * 20 =
7,400) is less than that of TW-LSTM (/=300 * 70 = 21,000), and thus TE-LSTM is more
compact. Experiments show that LE-LSTM outperforms TW-LSTM even though the
former has less parameters. The reasons may be attributed to the following: (1) the U’s
in TE-LSTM are shared across different tags so that they can be sufficiently trained for
even less frequent tags; and (2) a lower dimensional vector (e.g., 20) will be sufficient to
represent the tag since the total number of tags is 70 and lower dimensional embedding
can be well trained even for less frequent tags (note that there are more than 18
tags that appear less than 100 times on the Standford Sentiment Treebank (SST)
dataset).

To summarize, the weight matrices in TE-LSTM are shared across all tags and the
lower dimensional tag embeddings are more reasonable, facilitating the learning of
these parameters for even long-tail, infrequent tags.

4.4. Combining Tag Embeddings and Phrase Representations

In the previous models, we only consider the part-of-speech tag of word/phrase to
control the gates. However, the part-of-speech tag has been largely abstracted. For

@

instance, “is” and “like” are both verbs, “red” and “wonderful” are both adjectives, but

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:14 M. Huang et al.

these words differ in sentiment expression. Therefore, it may not be sufficient to learn
sentiment-favorable representations with only POS tags.

It is natural to combine the hidden representation of child phrases in our proposed
models. Formally, we have

!
ij=a<aoU,-E[tj]+(1 o) - S|::,:|>, (33)
Elt]] [AL
le-=U<a~Uf|:E[tg]:|+(1—a)'Slf hf), (34)
Elt; [A]
ﬁ:o(a-Uf[E{tﬁ}-i-(l—a)-S} K) (35)
!
Oj:O'((X'UOE[tj]+(1 a)-S, |:Zr :|> (36)

where « is a hyperparameter to control the trade-off between the input from POS
tags and that from words/phrases. In this setting, we can clearly see that the input/
forget/output gates are controlled by both syntactic and verbal information.

4.5. Model Training

The learning goal is the same as that in Equation (9). For brevity, we will not repeat
the equation here but only list the parameter set for each model, as follows.

TG-LSTM: The parameter set 0 = (L, W, W;, W, W,, W,,, W) where L is the word
embedding table to be fine-tuned, W € R%¥*? is the composition matrix for composing
the left and right child nodes (as defined in Equation (10)), W;, W, W, € Ré*™ gre the
matrices for computing input, forget, and output gates, respectively, W, is the matrix
of transforming word vectors to memory representations for leaf nodes (as defined in
Equation (17)), and W, € R¥M is the weight matrix of the softmax layer.

TG-LSTM with child-parent association (+p): 6 = (L, W, W; W, W, W,,
W,, W) where we have additional parameters W, W, for the child and parent forget
gates, respectively.

TE-LSTM: 0 = (L, W, E,U;,U¢,U,, W,, W,) where E € R%*m is the tag embedding
table, U;, Ur, U, € R¥% are the parameters for computing the input, forget, and output
gates, respectively, and all the other parameters are similar to the aforementioned.

TE-LSTM + with parent phrase (+p): The only difference to those in TE-LSTM is
that Uy € R¥%%_ as can be seen from Equations (31) and (32).

Models with combination of tag and word representations (+c): There are

additional parameters ¢’ = (S;, S, } So, S(l,e“f) where the first four matrices are for
the input, left forget, right forget, and output gates, respectively, and S(l,e“f is for the
leaf node as defined in Equation (18).

5. EXPERIMENTS

5.1. Datasets

Two datasets are used for evaluating the proposed models. The first one is the
SST dataset [Socher et al. 2013b] and the second one is the Movie Review (MR)
dataset [Pang and Lee 2005]. SST contains 11,855 sentences, and has been split into

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:15

the training/validation/test parts, containing 8,544/1,101/2,210 sentences, respectively.
All phrases (obtained by a parser) in each sentence have been annotated with five senti-
ment labels, ranging from very negative, negative, neutral, to positive and very positive.
There are two tasks on this dataset: fine-grained classification on the five class labels,
and binary classification on positive/negative, which ignores all neutral nodes.

The MR dataset is different from SST in that MR only includes sentence-level an-
notation with positive/negative labels. The dataset contains 10,662 sentences; half for
positive and another half for negative. To be consistent with other baselines, our ex-
periments are conducted with 10-fold cross validation; nine folds for training and the
remainder for test. Additionally, 10% of the training data is held out for validation.
To obtain the tree structure of a sentence, we resort to Stanford Parser [Klein and
Manning 2003]. Since we have no annotation on internal phrases of a parser tree, the
models learn with supervision from the root node’s annotation, which corresponds to
the sentence-level label.

In all the following experiments, accuracy is adopted for measuring the performance
of sentence-level sentiment classification.!

5.2. Experiment Settings

5.2.1. Settings for RNN Models. The word vectors were pretrained on an unlabeled cor-
pus (about 100,000 movie reviews collected by ourselves, and will be released soon)
by word2vec [Mikolov et al. 2013b] as initial values and the other vectors are initial-
ized by sampling from a uniform distribution U(—e, ¢) where ¢ is 0.01 in our experi-
ments. The dimension of word vectors is 25 for RNN models and 20 for RNTN models.?
Tanh is chosen as the nonlinearity function. And after computing the output of node
i with h; = f(g(hﬁ, K)), we set h; = ”Z—i‘ so that the resulting vector has a limited
norm. A back-propagation algorithm [Rumelhart et al. 1986] is used to compute gradi-
ents, implemented with Theano [Bastien et al. 2012]. We trained all our models using
Stochastic Gradient Descent (SGD) with a batch size of 30 examples, momentum of
0.9, Le-regularization weight of 0.0001, and a constant learning rate of 0.005.

5.2.2. Settings for LSTM Models. We adopt Glove vectors [Pennington et al. 2014] as
the initial setting of word embeddings.? The tag-specific weight matrices (W;, W;, W,)
are initialized with the distribution of Uniform(0,0.2). The tag embedding ma-
trix (E) is initialized with Uniform(0,0.5). Other parameters are initialized with
Uniform(0, 1/sqrt(d)), where d is the dimension of hidden representation, and we set
d=300. The dimension of tag embedding (d,) is set to 20; however, it is insensitive
to performance in our experiments. We adopt adaGrad to train the models, and the
learning rate is 0.05. It is worth noting that we adopt stochastic gradient descent to
update the word embeddings (V'), with a learning rate of 0.1 but without momentum.

The 1 parameter for the regularization term is set to 0.0001. During training, we
adopt the dropout operation before the softmax layer, with a rate of 0.5. Minibatch is
taken to train the models, each batch containing 25 samples. After training with 12
epochs, if the model performs best on the validation dataset, we will choose that point
as our final model.

1 Although some works reported phrase-level classification on SST, most of the works only include sentence-
level classification, like ours in this article.

2The number is chosen to make our models fairly comparable with the baselines including RNN [Socher
et al. 2011b], RNTN [Socher et al. 2013b], and AdaMC-RNN/RNTN [Dong et al. 2014] (see Section 5.3).
3We choose word embeddings that differ from those for RNN models, to make our models fairly comparable
with the counterpart baselines because Tree-LSTM reports the best performance when Glove is used [Tai
et al. 2015].

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:16 M. Huang et al.

5.3. Performance Comparison

We include several genres of classical baselines in the evaluation. The baselines are
listed as follows:

—SVM. A SVM model with bag-of-words representation [Pang and Lee 2008] where
each dimension in the feature vector corresponds to a lexical feature.

—MNB/bi-MNB. Multinomial Naive Bayes and its bigram variant, adopted from Wang
and Manning [2012].

—RNN. The traditional RNN model proposed by Socher et al. [2011b].

—MV-RNN. Matrix Vector Recursive Neural Network [Socher et al. 2012] represents
each word/phrase with a vector and a matrix. As reported, this model suffers from
too many parameters.

—RNTN. Recursive Neural Tensor Network [Socher et al. 2013b] employs a tensor for
composition function, which is claimed to model the meaning of longer phrases and
capture negation rules.

—AdaMC-RNN/RNTN. Adaptive Multi-Compositionality for RNN and RNTN [Dong
et al. 2014] trains with a group of composition functions and adaptively learns the
weight for each function.

—CNN/DCNN. A conventional Convolutional Neural Network [Kim 2014], and Dy-
namic Convolutional Neural Network [Kalchbrenner et al. 2014], which adopts a
dynamic pooling function in the pooling layer. Note that the authors reported that
they adopted 300-dimensional word embeddings obtained by word2vect.

—DRNN. Deep Recursive Neural Network [Irsoy and Cardie 2014] stacks multiple
recursive layers.

—LSTM/Bidirectional LSTM. The traditional sequence-based LSTM and Bidirec-
tional LSTM, which models a sentence in normal order and reverse order separately.

—Tree-LSTM. Tree-Structured Long Short-Term Memory [Tai et al. 2015]. The best
performance is obtained when Glove vectors and constituency trees are applied, with
word embeddings fine-tuned. Hence, to make comparison fair, we also adopt Glove
vectors, with word embeddings fine-tuned.

First of all, we evaluate the proposed models on Stanford Sentiment Treebank. To
make the results more convincing, we repeat the same experiment four times for each
model, and present the mean and standard deviation of the results from four runs. The
results are shown in Table I, where the results of baselines are reprinted* from the
original papers. As a matter of fact, on this dataset, fine-grained classification accuracy
is more convincing to evaluate the models than binary classification accuracy. From
the results, we have the following observations:

—TG-RNN outperforms RNN, RNTN, MV-RNN, AAMC-RNN/RNTN. Compared with
RNN, the fine-grained accuracy and binary accuracy of TG-RNN is improved by
3.8% and 3.9%, respectively. When compared with AdaMC-RNN, the accuracy of our
method is enhanced by 1.2% on the fine-grained prediction. The results show that
the syntactic knowledge indeed facilitates semantic composition in this task.

—TE-RNN: The fine-grained accuracy of TE-RNN is boosted by 4.8% compared with
RNN. TE-RNN is comparable to CNN and DCNN. Furthermore, TE-RNN is also
better than TG-RNN. This implies that learning the tag embeddings for child nodes

4Note that this dataset has a fixed partition of training/validation/test data; the baselines’ results are directly
comparable even without implementation of these models. Reprinting the results on this dataset is commonly
seen in the literature. Nevertheless, we reimplemented RNN/RNTN in Table I, and RNN has a performance
of 44.8%/83.6% for fine-grained and binary classification, respectively, while RNTN has a performance of
45.8%/84.9%, both close to what were reported in the original paper.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:17

Table I. Accuray on the Sentiment Treebank Dataset. p Means
Considering Child-Parent Association, and ¢ Means Combining the
Representations of Phrases and Tags. The Hyperparameter « is
Set to an Optimal Value of 0.5 (See Section 5.5). The Values in
Parentheses are the Standard Deviation*

Method Fine-grained Pos./Neg.
SVM [Pang and Lee 2008] 40.7 79.4
MNB [Wang and Manning 2012] 41.0 81.8
bi-MNB [Wang and Manning 2012] 41.9 83.1
RNN [Socher et al. 2011b] 43.2 82.4
RNTN [Socher et al. 2013b] 45.7 85.4
MV-RNN [Socher et al. 2012] 444 82.9
AdaMC-RNN [Dong et al. 2014] 45.8 87.1
AdaMC-RNTN [Dong et al. 2014] 46.7 88.5
DRNN [Irsoy and Cardie 2014] 49.8 86.6
TG-RNN (ours) 46.1(0.3) 86.2(0.3)
TE-RNN (ours) 47.8(0.3) 86.5(0.4)
TE-RNTN (ours) 48.8(0.4) 87.2(0.1)
CNN [Kim 2014] 48.0 88.1
DCNN [Kalchbrenner et al. 2014] 48.5 86.8
LSTM [Tai et al. 2015] 46.4(1.1) 84.9(0.6)
Bi-directional LSTM [Tai et al. 2015] 49.1(1.0) 87.5(0.5)
Tree-LSTM [Tai et al. 2015] 51.0(0.5) 88.0(0.3)
TW-LSTM (ours) 49.9(0.4) 87.4(0.4)
TW-LSTM-+p (ours) 50.6(0.4) 87.7(0.1)
TE-LSTM (ours) 50.3(0.2) 87.8(0.5)
TE-LSTM+p (ours) 51.3(0.4) 88.2(0.5)
TW-LSTM-+c (ours) 52.0(0.4) 89.2(0.3)
TW-LSTM-+c,p (ours) 52.1(0.4) 89.5(0.3)
TE-LSTM-+c (ours) 52.3(0.4) 89.4(0.4)
TE-LSTM+c,p (ours) 52.6(0.6) 89.6(0.4)

*The dimension of word/phrase embeddings (d) is 30 for RNN and
RNTN, 25 for AdaMC-RNN, 15 for AdaMC-RNTN, and 300 for
DRNN, all adopted from the references. For the CNN models, d =
300, obtained by word2vect, and for the LSTM models, d = 300,
obtained by Glove.

is more effective than simply choosing composition functions according to the POS
tag of a phrase.

—TE-RNTN: The fine-grained accuracy of TE-RNTN is improved by 3.2% compared
with RNTN. TE-RNTN also outperforms the AdaMC-RNTN by 2.2% on the fine-
grained classification task, and is better than CNN and DCNN. TE-RNTN is worse
than DRNN, but the complexity of DRNN is much higher than TE-RNTN, which will
be discussed in the next section.

—TW-LSTM: Tag Weighted LSTM outperforms RNN and CNN, and is comparable to
DRNN. Although the POS tag has been largely abstracted (many different words
may have the same tag); this shows that the POS tag can be effective in learning
phrase/sentence representations.

—TE-LSTM: When combining representations of phrases and tags, the proposals out-
perform Tree-LSTM,® as can be seen from the 4+c rows. Even without phrase repre-
sentations (see those without +c rows), these models are comparable to Tree-LSTM.

—Although the POS tag is effective, learning with or without phrase representations
makes a difference; see TE-LSTM+c (52.3%) vs. TE-LSTM (50.3%), TW-LSTM+c

5Note that this model only uses phrase representations.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:18 M. Huang et al.

Table Il. Classification Accuracy on the MR Dataset. Results of
Some Baselines are Obtained by Our Own Implementation*

Method Accuracy
RNN (implemented by ourselves) 76.2
RNTN (implemented by ourselves) 75.9
CNN [Kim 2014] 81.5
TG-RNN (ours) 76.4
TE-RNN (ours) 77.9
TE-RNTN (ours) 76.6
LSTM (implemented by ourselves) 77.4
Bidirectional LSTM (implemented by ourselves) 79.7
Tree-LSTM (implemented by ourselves) 80.7
TW-LSTM (ours) 80.2
TW-LSTM+p (ours) 80.6
TE-LSTM (ours) 80.7
TE-LSTM+p (ours) 80.1
TW-LSTM-+c (ours) 82.0
TW-LSTM+c,p (ours) 81.9
TE-LSTM+c (ours) 81.6
TE-LSTM-+c,p (ours) 82.2

*The dimension of word/phrase embeddings is 25 for RNN
and RNTN, and 300 for CNN (word2vect vectors) and LSTM
models (Glove vectors).

(52.0%) vs. TW-LSTM (49.9%), and TE-LSTM+c,p (52.6%) vs. TE-LSTM+p (51.3%).
Results from rows with +p show that considering child-parent association can im-
prove results.

—All the LSTM models (except sequential LSTM and Bidirectional LSTM) outperform
RNN, CNN, and other models.

As aforementioned, SST has phrase-level annotation for each node in a parsing
tree, which is too expensive to afford. To demonstrate whether our models can work
well with only sentence-level annotation, we conduct further experiments on the MR
dataset. Therefore, we further evaluate our models on MR with 10-fold cross validation.
Since most baselines shown in Table I did not perform experiments on this dataset, we
implement some baselines by ourselves, but not all of them, due to the fact that most
neural network models are too hard to reproduce the original results because of too
many parameters to be tuned and many details not being reported.

From the results shown in Table II, we can see the following observations:

—The margin obtained by TG-RNN and TE-RNN/RNTN over their counterparts is not
as significant as that on SST. We conjecture that this may be due to the fact that the
supervision at the root node may not be easily back-propagated into the low-level
nodes when the parsing trees are complex and deep.

—TW-LSTM performs almost as well as Tree-LSTM, indicating that the POS tag
is fairly useful in sentence representation although the POS tag has been largely
abstracted.

—When combining tag and word representations, our LSTM models are better than
Tree-LSTM. This shows that our proposal is effective in the setting of only sentence-
level annotation.

If we consider the results in Tables I and II together, we have the following
discussions:

—When trained with phrase-level annotation, TE-LSTM is better than TW-LSTM as
shown in Table I, while without phrase-level annotation, the two models perform

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:19

Table Ill. The Model Size of RNN/RNTN Models

Method Model size # of parameters | Accuracy on SST
RNN [Socher et al. 2011b] 02 x d?) ~1.8K 43.2
RNTN [Socher et al. 2013b] 04 x d3) ~108K 45.7
AdaMC-RNN [Dong et al. 2014] 02 xd? xc) ~18.7TK 45.8
AdaMC-RNTN [Dong et al. 2014] 04 x d® xc) ~202K 46.7
DRNN [Irsoy and Cardie 2014] Odxhxl+2xh?xl) ~451K 49.8
TG-RNN (ours) 02 x n; x d?) ~8.8K 46.1
TE-RNN (ours) 02 x (d+d.) xd) ~1.7TK 47.8
TE-RNTN (ours) 04 x (d+d,)? xd) ~54K 48.8

d: the dimension of word/phrase vectors. The optimal value is 30 for RNN and RNTN, 25 for AdaMC-
RNN, 15 for AdaMC-RNTN, and 300 for DRNN, all adopted from the references.

de: the dimension of tag embedding, whose optimal value is 8 for TE-RNN and 6 for TE-RNTN.

c: the number of composition functions (15 is the optimal setting) for AdaMC-RNN/RNTN.

1 and h: the number of layers and the width for each layer, respectively, in DRNN, and the optimal
values are [= 4 and h = 174, as reported in the references.

n¢: the number of frequent tags. In TG-RNN, n; = 6, corresponding to the number of composition
functions (k).

very closely as shown in Table II. As discussed in Section 4.3.2, TE-LSTM is a better
way for addressing infrequent tags since it adopts shared weight matrices for all tags
and lower dimensional tag embedding vectors. We believe that this setting is more
appropriate for those extremely infrequent tags.

—Modeling child-parent association is effective when phrase-level annotation is avail-
able. As shown in Table I, all models with the +p option outperform their counter-
parts, however, the option seems to be not that effective when only sentence-level
annotation is available (see Table II). This is in accordance with our design principle
since more supervision is needed to model the relationship between child phrase and
parent phrase.

To summarize this subsection, we can draw the following concluding statements:

—When combining the representations of tags and words, either RNN or LSTM models
can be improved, demonstrating that the POS tag can benefit sentence representa-
tion for classification tasks.

—Although the POS tag has been largely abstracted (since many different words
have the same POS tag), the models with only tag representation (for instance,
TW-LSTMs) can produce comparable results to those using word representation.

—The preceding claims hold not only under the setting of phrase-level annotation, but
also sentence-level annotation.

5.4. Complexity Analysis

To gain a deeper understanding of the models presented in Tables I and II, here we
discuss the parameter scale of the neural network models since the prediction power
of neural network models is highly correlated with the number of parameters.

The results are presented in Tables III and IV. Note that the parameters do not
include the word embedding tables since they are almost the same for the same type
of models. Therefore, we ignore this part but focus on the remainder parameters that
are related to model complexity, termed model size (for simplicity, we also drop the size
caused by all the bias vectors, a small part of the total size.). Also note that the optimal
hyperparameters are different across models, and the optimal values are present at
the bottom of each table. The optimal hyperparameters of baselines are adopted from
the original references.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:20 M. Huang et al.

Table IV. The Model Size of CNN and LSTM Models

Method Model size # of parameters | Accuracy on SST
CNN [Kim 2014] O n x fi xd) ~360K 48.0
DCNN [Kalchbrenner et al. 2014] O n x fi xd) ~360K 48.5
LSTM [Tai et al. 2015] 0(8 x d?) ~T20K 46.4
Bidirectional LSTM [Tai et al. 2015] 08 x d?) ~T720K 49.1
Tree-LSTM [Tai et al. 2015] 0(10 x d?) ~900K 51.0
TW-LSTM (ours) 02 xd?>+3xmxd) ~225K 49.9
TW-LSTM+c (ours) 010 x d? + 3 x ny x d) ~945K 52.0
TE-LSTM (ours) O2xd?+m xd, +3xd, xd) ~199K 50.3
TE-LSTM+c (ours) 010 xd?2+m xd, +3xd, xd) ~919K 52.3

d: the dimension of word/phrase vectors. For all CNN and LSTM models, d = 300.

n; and fj: the width of convolution filters and the number of feature maps in CNN and DCNN, respectively.
n; € {3,4,5} and f; = 100.

de: the dimension of tag embedding, and d, = 20 for TW-LSTMs and TE-LSTMs.

ng¢: the number of frequent tags. In TW-LSTM and TE-LSTM, n; = 50.

Table V. The Distribution of Tags in the SST Dataset. The Top Six Frequency Tags Cover
more than 95% Phrases. There are 28 Tags that AppearLess Than 300 Times, 18 Tags
Less Than 100 Times, and 10 Tags Less Than 20 Times

Phrase tag Frequency |Phrase tag Frequency |Phrase tag Frequency |Phrase tag Frequency
NP 72,865 DT 15,403 NNP 6,371 VB 4,181
S 33,290 PP 15,121 CC 6,004 TO 2,961
VP 28,443 ADJP 9,335 RB 5,996 VBG 2,222
NN 20,650 . 8,217 SBAR 5,317 VBP 2,181
IN 15,697 VBZ 7,737 NNS 5,098 VBN 2,057
JJ 15,687 , 7,021 ADVP 4,604 PRP$ 2,023

Results in Table III show that, our models, TG-RNN/TE-RNN, have much less pa-
rameters than RNTN and AAMC-RNN/RNTN, but have better performance. Although
TE-RNTN is worse than DRNN, the parameters of DRNN are as large as nine times
ours. This indicates that DRNN is much more complex, which requires much more data
and time to train. As a matter of fact, our TE-RNTN only takes 20 epochs to converge.

The results in Table IV show that TW-LSTM+c and TE-LSTM+c have a comparable
number of parameters with Tree-LSTM (about 900K), but our performance is better.
TW-LSTM and TE-LSTM have less parameters than CNNs but our performance is also
better. TW-LSTM and TE-LSTM have less parameters than LSTM and Bidirectional
LSTM (about 200K vs. 720K) but have better performance. Further, although TW-
LSTM and TE-LSTM are slightly worse than Tree-LSTM, Tree-LSTM has four to five
times the parameters of our models.

5.5. Parameter Tuning

There are some important parameters in our proposed models. For TG-RNN, the num-
ber of composition functions (%) is critical, while for TE-RNN/RNTN/TE-LSTM, the di-
mension of tag embedding vectors (d,) is quite important. For TW-LSTM and TE-LSTM,
the weight of combining phrase vectors and tag vectors («, as shown in Section 4.4) is
a key hyperparameter. All the following experiments are performed on the Stanford
Sentiment Treebank dataset.

First, we will study how the number of composition functions will influence the
performance of TG-RNN. Let us start from the corpus statistic. As shown in Table V,
the corpus contains 314,810 phrases but the distribution of phrase tags is extremely
imbalanced. For example, the phrase tag “NP” appears 72,865 times, while “NAC”
appears only 10 times. Hence, it is impossible to learn a composition function for those
infrequent phrase tags. A feasible way is to choose the top % frequent tags, each of

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:21

0.

o—e TG-RNN

accuracy

0.4 2 4 8 10 12

6
k

Fig. 7. The accuracy for TG-RNN with different % (the number of composition functions). The optimal value
is 6.

0.51f

accuracy
o o e
IS S o
3 3 =)

o
=
]

0.45 TE-RNTN]
— TE-RNN
0.44F — TELSTM |
0 ‘5 1‘0 1‘5 2‘0 2‘5 30

d,

Fig. 8. The accuracy for TE-RNN/RNTN and TE-LSTM with different dimensions of d,. The optimal value
is 8 for TE-RNN, 6 for TE-RNTN, and 20 for TE-LSTM. Note that the step size for TE-LSTM is 5 and that
for TE-RNN/RNTN is 2.

which corresponds to a unique composition function, while all the other phrase tags
share a same function. We experiment with different 2 for TG-RNN. The accuracy is
shown in Figure 7. Our model obtains the best performance when % is 6, where the top
six frequency tags cover more than 95% phrases.

Second, we investigate how the dimension of tag vectors will affect the performance of
TE-RNN/RNTN and TE-LSTM. In the corpus, we have 70 types of tags for leaf nodes
(words) and interior nodes (phrases). Infrequent tags whose frequency is less than
1,000 are ignored. There are 30 tags left and we learn an embedding for each of these
frequent tags. We vary the dimension of the embedding d, from 0 to 30.% Figure 8 shows
the accuracy for TE-RNN/RNTN and TE-LSTM with different dimensions of d,. Our
model obtains the best performance when d, is 8 for TE-RNN, 6 for TE-RNTN, and 20 for
TE-LSTM. The results show that too small dimensions may not be sufficient to encode
the syntactic information of tags and too large dimensions damage the performance.

Third, we justify how the hyperparameter « will affect the performance of TE-LSTM.
As demonstrated in Table I, for TE-LSTM, superior performance can be obtained when
combining the representations of phrases and tags. The « parameter controls the bal-
ance of syntactic information and phrase information. We experiment with the setting
of TE-LSTM-+c,p, varying « from 0 to 1.0 with a step of 0.25. Results in Table VI show
that the optimal value is close to 0.5. Note that when « = 0.0 the model reduces to
Tree-LSTM, and when o = 1.0 the model reduces to TE-LSTM+p.

6Since the total number of tags is 70, this range (i.e., (0,30]) will be sufficient to find the optimal value.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:22 M. Huang et al.

Table VI. Classification Accuracy
on the Stanford Sentiment Tree
bank Dataset for Different o

« |Fine-grained Pos./Neg.
0.0 51.0(0.5) 88.0(0.3)
0.25 | 51.2(1.1) 89.3(0.3)
0.50 | 52.6(0.6) 89.6(0.4)
0.75 | 52.0(0.8) 89.5(0.3)
1.0 51.3(0.4) 88.2(0.5)

Table VII. The Top Five Nearest Neighboring Tags for a Query Tag

Query Tag Model Most Similar Tags
. TE-RNN ADJP VBZ DT NP RB
JJ (Adjective) TE-LSTM | NNP ADJP VBZ RB VP
VBZ (Verb, third person TE-RNN NP ADJP JJ PP DT
singular present) TE-LSTM JJ ADJP RB PP IN
. TE-RNN PP RB NP VB JJ
DT (Determiner) TE-LSTM PP ADJP NP CC VB
TE-RNN VP RB NP VBZ JJ
NN (Noun phrase) TE-LSTM RB VP IN NP VB
TE-RNN DT PPRB
TE-LSTM DTJJIN:

ADJP: adjective phrase; JJ: adjective; RB: adverb.

VB: verb, base form; VBZ: verb, third person singular present; VP: verb
phrase.

NN: noun, singular/mass; NP: noun phrase; NNP: proper noun, singular.
DT: determiner; PP: prepositional phrase; IN: preposition/subordinating con-
junction; CC: coordinating conjunction.

5.6. Analysis on the POS Tags

We have shown the success of encoding the part-of-speech tag in neural networks. In
this section, we will further reveal how the tags will play a role in these neural network
models.

In order to justify whether tag vectors obtained from tag embedded models are
meaningful, we inspect the similarity between tags. The experiment is conducted with
TE-RNN and TE-LSTM, respectively. For each tag vector, we find the top five nearest
neighbors based on Euclidean distance, as exemplified in Table VII. Adjectives and
adverbs are of significant importance in sentiment analysis. Although “JJ” is a tag for
words and “ADJP” for phrases, they are close in vector space, since they play a similar
role in sentences. VP (VBZ, VP, etc.) are close to NP (NN, NNP, etc.), probably due
to the fact that VP are usually adjacent to NP in composition and they cooccur very
frequently. What is more interesting is that the nearest neighbor of “Dot” is “Colon,”
because both of them are punctuation marks and play a similar role in composition.

If we compare the most similar sets between TE-RNN and TE-LSTM, the overlap
in the pairs shows that similar tag topologies can be obtained although the rank is
different (note that rank is sensitive to the distance score; a small score difference may
cause a big change in rank). For instance, for all query tags, the two models have three
tags in common. Note that it is hard to generate perfect topologies for these models since
our optimization goal is the classification performance instead of the tag representation,
while tag embeddings are just a side product of the goal. Generally speaking, these
results show that tags of similar syntactic role or sentiment informativeness are close
in vector space, demonstrating that the semantics of embedded tag vectors is effective.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:23

Table VIII. The Importance of Tags
for Semantic Composition in TW-
LSTM and TE-LSTM

Tag TW-LSTM | TE-LSTM
ADJP 0.742 0.881
VP 0.750 0.819
JJ 0.674 0.776
NP 0.580 0.698
VBZ 0.463 0.593
NN 0.402 0.570
CcC 0.368 0.445
IN 0.307 0.310
DT 0.246 0.270

To further reveal how POS tags influence the process of semantic composition, we
attempt to measure the importance of tags learned by TW-LSTM and TE-LSTM.
Since the forget gate is the most important parameter [Greff et al. 2015], we take
the average of all dimensions of the output of the forget gates as the value to quantify

the importance of a tag. Specifically, for TW-LSTM, the value is %12?:1 a(W,[tDI[Z] for

tag ¢t. For TE-LSTM, the value is ,%Zidzl o(Uy * E[tD[i]. The larger the value, the more
important the tag.

The results are shown in Table VIII. As can be seen, the most important tags are
ADJP, VP, and J<J in both models where such words usually carry strong sentiment in-
formation, while DT and IN are much less influential for learning sentiment-favorable
representation. This is in accordance with our intuition that words with such tags as
ADJP, VP, and JJ are more possible to carry sentiment expressions.

6. DISCUSSIONS

We have shown that the part-of-speech tag can benefit the learning of sentiment fa-
vorable representations and thus successfully enhance the performance of sentiment
classification. Generally speaking, the prediction power of neural networks is highly
correlated with the number of parameters, where this claim is also justified in this ar-
ticle. However, this is not to say that more parameters must have better performance.
Our work reveals two key factors: how much useful knowledge has been put into the
networks and how the models are properly designed.

Recall the results in Table III: our TE-RNN model has much less parameters than
RNTN (1.7K vs. 108K) but better performance (47.8% vs. 45.7%). This is similar for
TE-RNTN and RNTN (parameter: 54K vs. 108K; performance: 48.8% vs. 45.7%). This
shows that syntactic knowledge such as the part-of-speech tag is very effective for
semantic composition. If we compare TE-RNN with TG-RNN (parameter: 1.7K vs.
8.8K; performance: 47.5% vs. 46.1%), where TE-RNN learns tag embeddings while
TG-RNN chooses tag-specific composition functions, we can see that a proper way to
encode such knowledge is also important.

The results in Table IV also demonstrate that the factors are indeed influential.
Unlike Tree-LSTM that employs word embeddings to control gates, TE-LSTM only
employs part-of-speech tags and produces comparable results with much less param-
eters. When combined with word embeddings, TE-LSTM+c has better performance
than Tree-LSTM, with comparable parameters. Although TE-LSTM and TW-LSTM
have close parameters and performance, we have discussed that TE-LSTM is a better
way to encode syntactic knowledge.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:24 M. Huang et al.

In order to make neural networks perform competitively, we have shown that en-
coding useful knowledge can be of much benefit, and that whether the parameters are
properly designed is also crucial to performance improvement.

7. CONCLUSIONS

In this article, we have presented that syntactic knowledge can be encoded in neural
networks for dealing with semantic composition and experiments show that it is effec-
tive to learn phrase/sentence representation with such knowledge. More specifically, we
have successfully encoded part-of-speech tags in RNN, RNTN, and LTSM networks. In
the proposed (TG-RNN, TE-RNN/RNTN, TW-LSTM, and TE-LSTM), the part-of-speech
tag can be used to either choose composition functions in neural networks, or learn tag
embeddings and then employ those tag embeddings to control components of the neural
networks. The evaluation on two benchmark datasets, SST and MR, has shown that
our proposals outperform the corresponding reference baselines. The results show that
(1) comparable results can be obtained when only considering the part-of-speech tag,
although POS tags have been largely abstracted in comparison to words, and (2) that
superior results can be obtained when combining the representations of word/phrase
and part-of-speech tag.

In most conventional models, the composition process is usually optimized with a
task-specific loss and the supervision from the output layer is back-propagated into the
lower layers. This can be trained end-to-end, without a necessity to attend the details
of the blackbox, while we show here that better performance can be obtained if we can
properly model the intermediate details (such as part-of-speech tags and relationships
between words or phrases) of the composition process of representation learning. The
goal of this article is to demonstrate that such intermediate details should be well
explored for designing an appropriate neural network. We have successfully shown
that such efforts are worth making.

ACKNOWLEDGMENTS
We would like to thank Mr. Bo Tian, Mr. Hao Zhou, and Ms. Liangqi Liu for their support to this work.

REFERENCES

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio. 2012. Theano: New features and speed improvements. Deep
Learning and Unsupervised Feature Learning. NIPS 2012 Workshop.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Research 3 (2003), 1137-1155.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. 2017. Improving sentiment analysis via sentence type
classification using BiILSTM-CRF and CNN. Expert Systems with Applications 72 (2017), 221-230.
Yanging Chen and Steven Skiena. 2014. Building sentiment lexicons for all major languages. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).

Association for Computational Linguistics, 383—-389. DOI : http:/dx.doi.org/10.3115/v1/P14-2063

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv:1412.3555 (2014).

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine
Learning. ACM, 160-167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. Journal of Machine Learning Research 12 (2011),
2493-25317.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014. Adaptive multi-compositionality for recursive neural
models with applications to sentiment analysis. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI'14). AAAL

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

http://dx.doi.org/10.3115/v1/P14-2063

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:25

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over freebase with multi-column convo-
lutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, 260—269.

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990), 179-211.

Peter W. Foltz, Walter Kintsch, and Thomas K. Landauer. 1998. The measurement of textual coherence with
latent semantic analysis. Discourse Processes 25, 2—-3 (1998), 285-307.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. 2013. Hybrid speech recognition with deep
bidirectional LSTM. In Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding. IEEE, 273-278.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jiirgen Schmidhuber. 2015.
LSTM: A search space odyssey. arXiv:1503.04069 (2015).

Karl Moritz Hermann and Phil Blunsom. 2013. The role of syntax in vector space models of compositional
semantics. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computer Linguistics, 894-904.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997),
1735-1780.

Minging Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 168-177.
Ozan Irsoy and Claire Cardie. 2014. Deep recursive neural networks for compositionality in language. In
Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS’14).

2096-2104.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (ACL'14). Association for Computer Linguistics, 655-665.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In EMNLP. Association for
Computational Linguistics, 1746-1751.

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting on Association for Computational Linguistics—Volume 1. Association for Computational
Linguistics, 423-430.

Thomas K. Landauer and Susan T. Dumais. 1997. A solution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge. Psychological Review 104, 2 (1997),
211.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015. Molding CNNs for text: Non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing. Association of Computational Linguistics, 1565-1575.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015. A hierarchical neural autoencoder for paragraphs
and documents. arXiv:1506.01057 (2015).

Biao Liu, Minlie Huang, Jiashen Sun, and Xuan Zhu. 2015. Incorporating domain and sentiment supervision
in representation learning for domain adaptation. In Proceedings of the 24th International Conference
on Artificial Intelligence. AAAI Press, 1277-1283.

Tomas Mikolov. 2012. Statistical language models based on neural networks. Presentation at Google, Moun-
tain View, April 2, 2012.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representa-
tions in vector space. CoRR (2013).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In Proceedings of the 26th International Conference on
Neural Information Processing Systems (NIPS’13). 3111-3119.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based models of semantic composition. In Proceedings of ACL.
236-244.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 115-124.

Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Infor-
mation Retrieval 2, 1-2 (2008), 1-135.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP’14) 12
(2014), 1532-1543.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

26:26 M. Huang et al.

Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan Zhu, and Xiaoyan Zhu. 2015. Learning tag embeddings
and tag-specific composition functions in recursive neural network. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing, Vol. 1. 1365-1374.

Sebastian Rudolph and Eugenie Giesbrecht. 2010. Compositional matrix-space models of language. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’11). Associ-
ation for Computer Linguistics, 907-916.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning representations by back-
propagating errors. Nature 323 (1986), 533-536.

Aliaksei Severyn and Alessandro Moschitti. 2015a. On the automatic learning of sentiment lexicons. In
Proceedings of the NAACL HLT 2015 Conference of the North American Chapter of the Association for
Computational Linguistics. 1397-1402.

Aliaksei Severyn and Alessandro Moschitti. 2015b. Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM SIGIR, 959-962.

Paul Smolensky. 1990. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence 46, 1 (1990), 159-216.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013a. Parsing with composi-
tional vector grammars. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computer Linguistics, 455-465.

Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D. Manning, and Andrew Y. Ng. 2011a. Dy-
namic pooling and unfolding recursive autoencoders for paraphrase detection. In Proceedings of the 24th
International Conference on Neural Information Processing Systems (NIPS’11). 801-809.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL12). Association for Computational Linguistics, 1201-1211.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning. 2011b.
Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP’11). Association for Com-
putational Linguistics, 151-161.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013b. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In EMNLP. Association for Computational Linguistics, 1631-1642.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks.
In Proceedings of Advances in Neural Information Processing Systems. 3104-3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. arXiv:1503.00075 (2015).

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated recurrent neural network for sen-
timent classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. 1422—-1432.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 1555—-1565.

Zhiyang Teng, Duy-Tin Vo, and Yue Zhang. 2016. Context-sensitive lexicon features for neural sentiment
analysis. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
1629-1638.

Tin Duy Vo and Yue Zhang. 2016. Don’t count, predict! an automatic approach to learning sentiment
lexicons for short text. In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, 219-224.
DOI:http://dx.doi.org/10.18653/v1/P16-2036

Sida I. Wang and Christopher D. Manning. 2012. Baselines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers—Volume 2 (ACL'12). Association for Computational Linguistics, 90-94.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing (HLT05). 347-354.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

http://dx.doi.org/10.18653/v1/P16-2036

Encoding Syntactic Knowledge in Neural Networks for Sentiment Classification 26:27

Ainur Yessenalina and Claire Cardie. 2011. Compositional matrix-space models for sentiment analysis.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’15).

Association for Computer Linguistics, 172-182.
Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015. Long short-term memory over tree structures.
arXiv:1503.04881.

Received June 2016; revised October 2016; accepted December 2016

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 26, Publication date: June 2017.

