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Abstract

Building dialogue systems that can converse naturally with
humans is a challenging yet intriguing problem of artificial
intelligence. In open-domain human-computer conversation,
where the conversational agent is expected to respond to hu-
man utterances in an interesting and engaging way, common-
sense knowledge has to be integrated into the model effec-
tively. In this paper, we investigate the impact of provid-
ing commonsense knowledge about the concepts covered in
the dialogue. Our model represents the first attempt to inte-
grating a large commonsense knowledge base into end-to-
end conversational models. In the retrieval-based scenario,
we propose a model to jointly take into account message
content and related commonsense for selecting an appropri-
ate response. Our experiments suggest that the knowledge-
augmented models are superior to their knowledge-free coun-
terparts.

Introduction

In recent years, data-driven approaches to building conver-
sation models have been made possible by the proliferation
of social media conversation data and the increase of com-
puting power. By relying on a large number of message-
response pairs, the Seq2Seq framework (Sutskever, Vinyals,
and Le 2014) attempts to produce an appropriate response
based solely on the message itself, without any memory
module.

In human-to-human conversations, however, people re-
spond to each other’s utterances in a meaningful way not
only by paying attention to the latest utterance of the conver-
sational partner itself, but also by recalling relevant informa-
tion about the concepts covered in the dialogue and integrat-
ing it into their responses. Such information may contain
personal experience, recent events, commonsense knowl-
edge and more (Figure 1). As a result, it is speculated that
a conversational model with a “memory look-up” module
can mimic human conversations more closely (Ghazvinine-
jad et al. 2017; Bordes and Weston 2016). In open-domain
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human-computer conversation, where the model is expected
to respond to human utterances in an interesting and engag-
ing way, commonsense knowledge has to be integrated into
the model effectively.

In the context of artificial intelligence (AI), commonsense
knowledge is the set of background information that an in-
dividual is intended to know or assume and the ability to
use it when appropriate (Minsky 1986; Cambria et al. 2009;
Cambria and Hussain 2015). Due to the vastness of such
kind of knowledge, we speculate that this goal is better
suited by employing an external memory module contain-
ing commonsense knowledge rather than forcing the system
to encode it in model parameters as in traditional methods.

In this paper, we investigate how to improve end-to-end
dialogue systems by augmenting them with commonsense
knowledge, integrated in the form of external memory. The
remainder of this paper is as follows: next section proposes
related work in the context of conversational models and
commonsense knowledge; following, a section describes the
proposed model in detail; later, a section illustrates experi-
mental results; finally, the last section proposes concluding
remarks and future work.

Related Work

Conversational Models

Data-driven conversational models generally fall into two
categories: retrieval-based methods (Lowe et al. 2015b;
2016a; Zhou et al. 2016), which select a response from a
predefined repository, and generation-based methods (Rit-
ter, Cherry, and Dolan 2011; Serban et al. 2016; Vinyals
and Le 2015), which employ an encoder-decoder framework
where the message is encoded into a vector representation
and, then, fed to the decoder to generate the response. The
latter is more natural (as it does not require a response repos-
itory) yet suffers from generating dull or vague responses
and generally needs a great amount of training data.

The use of an external memory module in natural lan-
guage processing (NLP) tasks has received considerable at-
tention recently, such as in question answering (Weston et
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Figure 1: Left: In traditional dialogue systems, the response is determined solely by the message itself (arrows denote depen-
dencies). Right: The responder recalls relevant information from memory; memory and message content jointly determine the
response. In the illustrated example, the responder retrieves the event “Left dictionary on book shelf” from memory, which
triggers a meaningful response.

al. 2015) and language modeling (Sukhbaatar et al. 2015). It
has also been employed in dialogue modeling in several lim-
ited settings. With memory networks, (Dodge et al. 2015)
used a set of fact triples about movies as long-term mem-
ory when modeling reddit dialogues, movie recommenda-
tion and factoid question answering. Similarly in a restau-
rant reservation setting, (Bordes and Weston 2016) provided
local restaurant information to the conversational model.

Researchers have also proposed several methods to in-
corporate knowledge as external memory into the Seq2Seq
framework. (Xing et al. 2016) incorporated the topic words
of the message obtained from a pre-trained latent Dirich-
let allocation (LDA) model into the context vector through
a joint attention mechanism. (Ghazvininejad et al. 2017)
mined FoodSquare tips to be searched by an input message
in the food domain and encoded such tips into the context
vector through one-turn hop. The model we propose in this
work shares similarities with (Lowe et al. 2015a), which en-
coded unstructured textual knowledge with a recurrent neu-
ral network (RNN). Our work distinguishes itself from pre-
vious research in that we consider a large heterogeneous
commonsense knowledge base in an open-domain retrieval-
based dialogue setting.

Commonsense Knowledge

Several commonsense knowledge bases have been con-
structed during the past decade, such as ConceptNet (Speer
and Havasi 2012) and SenticNet (Cambria et al. 2016). The
aim of commonsense knowledge representation and reason-
ing is to give a foundation of real-world knowledge to a va-
riety of AI applications, e.g., sentiment analysis (Poria et
al. 2015), handwriting recognition (Wang et al. 2013), e-
health (Cambria et al. 2010), aspect extraction (Poria et al.
2016), and many more. Typically, a commonsense knowl-
edge base can be seen as a semantic network where concepts
are nodes in the graph and relations are edges (Figure 2).
Each <concept1, relation, concept2> triple is termed an
assertion.

Based on the Open Mind Common Sense project (Singh et
al. 2002), ConceptNet not only contains objective facts such
as “Paris is the capital of France” that are constantly true,
but also captures informal relations between common con-
cepts that are part of everyday knowledge such as “A dog is
a pet”. This feature of ConceptNet is desirable in our experi-
ments, because the ability to recognize the informal relations

Figure 2: A sketch of SenticNet semantic network.

between common concepts is necessary in the open-domain
conversation setting we are considering in this paper.

Model Description

Task Definition

In this work, we concentrate on integrating commonsense
knowledge into retrieval-based conversational models, be-
cause they are easier to evaluate (Liu et al. 2016; Lowe et al.
2016a) and generally take a lot less data to train. We leave
the generation-based scenario to future work.

Message (context) x and response y are a sequence of to-
kens from vocabulary V . Given x and a set of response can-
didates [y1, y2, y3..., yK ] ∈ Y , the model chooses the most
appropriate response ŷ according to:

ŷ = argmax
y∈Y

f(x, y), (1)

where f(x, y) is a scoring function measuring the
“compatibility” of x and y. The model is trained
on <message, response, label> triples with cross en-
tropy loss, where label is binary indicating whether the
<message, response> pair comes from real data or is ran-
domly combined.

Dual-LSTM Encoder

As a variation of vanilla RNN, a long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber 1997)
is good at handling long-term dependencies and can be used
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to map an utterance to its last hidden state as fixed-size em-
bedding representation. The Dual-LSTM encoder (Lowe et
al. 2015b) represents the message x and response y as fixed-
size embeddings �x and �y with the last hidden states of the
same LSTM. The compatibility function of the two is thus
defined by:

f(x, y) = σ(�xTW�y), (2)

where matrix W ∈ RD×D is learned during training.

Commonsense Knowledge Retrieval

In this paper, we assume that a commonsense knowledge
base is composed of assertions A about concepts C. Each
assertion a ∈ A takes the form of a triple <c1, r, c2>, where
r ∈ R is a relation between c1 and c2, such as IsA, Capa-
bleOf, etc. c1, c2 are concepts in C. The relation set R is
typically much smaller than C. c can either be a single word
(e.g., “dog” and “book”) or a multi-word expression (e.g.,
“take a stand” and “go shopping”). We build a dictionary
H out of A where every concept c is a key and a list of all
assertions in A concerning c, i.e., c = c1 or c = c2, is the
value. Our goal is to retrieve commonsense knowledge about
every concept covered in the message.

We define Ax as the set of commonsense assertions con-
cerned with message x. To recover concepts in message x,
we use simple n-gram matching (n ≤ N )1. Every n-gram
in c is considered a potential concept2. If the n-gram is a
key in H , the corresponding value, i.e., all assertions in A
concerning the concept, is added to Ax (Figure 4).

Tri-LSTM Encoder

Our main approach to integrating commonsense knowl-
edge into the conversational model involves using an-
other LSTM for encoding all assertions a in Ax, as il-
lustrated in Figure 3. Each a, originally in the form of
<c1, r, c2>, is transformed into a sequence of tokens by
chunking c1, c2, concepts which are potentially multi-word
phrases, into [c11, c12, c13...] and [c21, c22, c23...]. Thus, a =
[c11, c12, c13..., r, c21, c22, c23...].

We add R to vocabulary V , that is, each r in R will be
treated like any regular word in V during encoding. We de-
cide not to use each concept c as a unit for encoding a be-
cause C is typically too large (>1M). a is encoded as em-
bedding representation �a using another LSTM. Note that
this encoding scheme is suitable for any natural utterances
containing commonsense knowledge3 in addition to well-
structured assertions. We define the match score of assertion
a and response y as:

m(a, y) = �aTWa�y, (3)

where Wa ∈ RD×D is learned during training. Common-
sense assertions Ax associated with a message is usually

1More sophisticated methods such as concept parser (Ra-
jagopal et al. 2013) are also possible. Here, we chose n-gram for
better speed and recall. N is set to 5.

2For unigrams, we exclude a set of stopwords. Both the original
version and stemmed version of every word are considered.

3Termed surface text in ConceptNet.

large (>100 in our experiment). We observe that in a lot of
cases of open-domain conversation, response y can be seen
as triggered by certain perception of message x defined by
one or more assertions in Ax, as illustrated in Figure 4. We
can see the difference between message and response pair
when commonsense knowledge is used. For example, the
word ‘Insomnia’ in the message is mapped to the common-
sense assertion ‘Insomnia, IsA, sleep problem’. The appro-
priate response is then matched to ‘sleep problem’ that is
‘go to bed’. Similarly, the word ‘Hawaii’ in the message
is mapped to the commonsense assertion ‘Hawaii, Used-
For, tourism’. The appropriate response is then matched to
‘tourism’ that is ‘enjoy vacation’. In this way, new words can
be mapped to the commonly used vocabulary and improve
response accuracy.

Our assumption is that Ax is helpful in selecting an appro-
priate response y. However, usually very few assertions in
Ax are related to a particular response y in the open-domain
setting. As a result, we define the match score of Ax and y
as

m(Ax, y) = max
a∈Ax

m(a, y), (4)

that is, we only consider the commonsense assertion a
with the highest match score with y, as most of Ax are not
relevant to y. Incorporating m(Ax, y) into the Dual-LSTM
encoder, our Tri-LSTM encoder model is thus defined as:

f(x, y) = σ(�xTW�y +m(Ax, y)), (5)

i.e., we use simple addition to supplement x with Ax, with-
out introducing a mechanism for any further interaction be-
tween x and Ax. This simple approach is suitable for re-
sponse selection and proves effective in practice.

The intuition we are trying to capture here is that an ap-
propriate response y should not only be compatible with x,
but also related to certain memory recall triggered by x as
captured by m(Ax, y). In our case, the memory is common-
sense knowledge about the world. In cases where Ax = ∅,
i.e., no commonsense knowledge is recalled, m(Ax, y) = 0
and the model degenerates to Dual-LSTM encoder.

Comparison Approaches

Supervised Word Embeddings We follow (Bordes and
Weston 2016; Dodge et al. 2015) and use supervised word
embeddings as a baseline. Word embeddings are most well-
known in the context of unsupervised training on raw text
as in (Mikolov et al. 2013), yet they can also be used to
score message-response pairs. The embedding vectors are
trained directly for this goal. In this setting, the “compatibil-
ity” function of x and y is defined as:

f(x, y) = �xT�y (6)

In this setting, �x, �y are bag-of-words embeddings. With re-
trieved commonsense assertions Ax, we embed each a ∈ Ax

to bag-of-words representation �a and have:

f(x, y) = �xT�y + max
a∈Ax

�aT�y. (7)

This linear model differs from Tri-LSTM encoder in that it
represents an utterance with its bag-of-words embedding in-
stead of RNNs.
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Figure 3: Tri-LSTM encoder. We use LSTM to encode message, response and commonsense assertions. LSTM weights for
message and response are tied. The lower box is equal to a Dual-LSTM encoder. The upper box is the memory module encoding
all commonsense assertions.

Memory Networks Memory networks (Sukhbaatar et al.
2015; Weston, Chopra, and Bordes 2014) are a class of mod-
els that perform language understanding by incorporating a
memory component. They perform attention over memory
to retrieve all relevant information that may help with the
task. In our dialogue modeling setting, we use Ax as the
memory component. Our implementation of memory net-
works, similar to (Bordes and Weston 2016; Dodge et al.
2015), differs from supervised word embeddings described
above in only one aspect: how to treat multiple entries in
memory. In memory networks, output memory representa-
tion �o =

∑
i pi�ai, where �ai is the bag-of-words embedding

of ai ∈ Ax and pi is the attention signal over memory Ax

calculated by pi = softmax(�xT �ai). The “compatibility”
function of x and y is defined as:

f(x, y) = (�x+ �o)T�y = �xT�y + (
∑

i

pi�ai)
T�y (8)

In contrast to supervised word embeddings described
above, attention over memory is determined by message x.
This mechanism was originally designed to retrieve infor-
mation from memory that is relevant to the context, which in
our setting is already achieved during commonsense knowl-
edge retrieval. As speculated, the attention over multiple
memory entries is better determined by response y in our
setting. We empirically prove this point below.

Experiments

Twitter Dialogue Dataset

To the best of our knowledge, there is currently no well-
established open-domain response selection benchmark
dataset available, although certain Twitter datasets have been
used in the response generation setting (Li et al. 2015;
2016). We thus evaluate our method against state-of-the-art
approaches in the response selection task on Twitter dia-
logues.

1.4M Twitter <message, response> pairs are used for
our experiments. They were extracted over a 5-month pe-
riod, from February through July in 2011. 1M Twitter <mes-
sage, response> pairs are used for training. With the original
response as ground truth, we construct 1M <message, re-
sponse, label=1> triples as positive instances. Another 1M
negative instances <message, response, label=0> are con-
structed by replacing the ground truth response with a ran-
dom response in the training set.

For tuning and evaluation, we use 20K <message,
response> pairs that constitute the validation set (10K) and
test set (10K). They are selected by a criterion that encour-
ages interestingness and relevance: both the message and re-
sponse have to be at least 3 tokens long and contain at least
one non-stopword. For every message, at least one concept
has to be found in the commonsense knowledge base. For
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Figure 4: In the illustrated case, five concepts are identified in the message. All assertions associated with the five concepts
constitute Ax. We show three appropriate responses for this single message. Each of them is associated with (same color)
only one or two commonsense assertions, which is a paradigm in open-domain conversation and provides ground for our max-
pooling strategy. It is also possible that an appropriate response is not relevant to any of the common assertions in Ax at all, in
which case our method falls back to Dual-LSTM.

each instance, we collect another 9 random responses from
elsewhere to constitute the response candidates.

Preprocessing of the dataset includes normalizing hash-
tags, “@User”, URLs, emoticons. Vocabulary V is built out
of the training set with 5 as minimum word frequency, con-
taining 62535 words and an extra <UNK> token repre-
senting all unknown words.

ConceptNet

In our experiment, ConceptNet4 is used as the commonsense
knowledge base. Preprocessing of this knowledge base in-
volves removing assertions containing non-English charac-
ters or any word outside vocabulary V . 1.4M concepts re-
main. 0.8M concepts are unigrams, 0.43M are bi-grams and
the other 0.17M are tri-grams or more. Each concept is as-
sociated with an average of 4.3 assertions. More than half of
the concepts are associated with only one assertion.

An average of 2.8 concepts can be found in ConceptNet
for each message in our Twitter Dialogue Dataset, yielding
an average of 150 commonsense assertions (the size of Ax).
Unsurprisingly, common concepts with more assertions as-
sociated are favored in actual human conversations.

It is worth noting that ConceptNet is also noisy due to un-
certainties in the constructing process, where 15.5% of all
assertions are considered “false” or “vague” by human eval-
uators (Speer and Havasi 2012). Our max-pooling strategy
used in Tri-LSTM encoder and supervised word embeddings
is partly designed to alleviate this weakness.

4https://conceptnet.io. ConceptNet can be Downloaded at
http://github.com/commonsense/conceptnet5/wiki/Downloads.

Parameter Settings

In all our models excluding term frequency–inverse docu-
ment frequency (TF-IDF) (Ramos and others 2003), we ini-
tialize word embeddings with pretrained GloVe embedding
vectors (Pennington, Socher, and Manning 2014). The size
of hidden units in LSTM models is set to 256 and the word
embedding dimension is 100. We use stochastic gradient de-
scent (SGD) for optimizing with batch size of 64. We fixed
training rate at 0.001.

Results and Analysis

The main results for TF-IDF, word embeddings, memory
networks and LSTM models are summarized in Table 1. We
observe that:

(1) LSTMs perform better at modeling dialogues than
word embeddings on our dataset, as shown by the compari-
son between Tri-LSTM and word embeddings.

(2) Integrating commonsense knowledge into conversa-
tional models boosts model performance, as Tri-LSTM out-
performs Dual-LSTM by a certain margin.

(3) Max-pooling over all commonsense assertions de-
pending on response y is a better method for utilizing com-
monsense knowledge than attention over memory in our set-
ting, as demonstrated by the gain of performance of word
embeddings over memory networks.

We also analyze samples from the test set to gain an
insight on how commonsense knowledge supplements the
message itself in response selection by comparing Tri-
LSTM encoder and Dual-LSTM encoder.
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Table 1: Model evaluation. ∗ indicates models with commonsense knowledge integrated. The TF-IDF model is trained follow-
ing (Lowe et al. 2015b). The “Recall@k” method is used for evaluation (Lowe et al. 2016b). The model is asked to rank a
total of N responses containing one positive response and N − 1 negative responses (N = 10 according to our test set). If the
ranking of the positive response is not larger than k, Recall@k is positive for that instance.

Recall@k TF-IDF Word Embeddings∗ Memory Networks∗ Dual-LSTM Tri-LSTM∗ Human
Recall@1 32.6% 73.5% 72.1% 73.6% 77.5% 87.0%
Recall@2 47.3% 84.0% 83.6% 85.6% 88.0% -
Recall@5 68.0% 95.5% 94.2% 95.9% 96.6% -

Table 2: Case studies for the impact of commonsense assertions. “Activated Assertion” is the commonsense assertion entry in
Ax chosen by max-pooling. ♦ indicates correct selection. All 4 instances displayed are taken from the test set.

Instance Message Response selected
by Dual-LSTM

1 i was helping my brother
with his chinese. did yoga help?

2 bonjour madame, quoi de neuf. yeah me too !

3 help what colour shoes can i
wear with my dress to the wedding? very pale pink or black.♦

4 helping mum paint my bedroom.
shouldn’t it be your mum

helping you? what color are
you going for ?♦

Instance Response selected
by Tri-LSTM

Activated Assertion
(total size of Ax)

1
the language sounds interesting!

i really gotta learn it !♦
chinese, IsA,

human language (755)

2
loool . you can stick with english ,

its all good unless you want
to improve your french .♦

bonjour, IsA,
hello in french (9)

3 very pale pink or black.♦ pink, RelatedTo,
colour (1570)

4
shouldn’t it be your mum

helping you? what color are
you going for ?♦

paint, RelatedTo,
household color (959)

As illustrated in Table 2, instances 1,2 represent cases
where commonsense assertions as an external mem-
ory module provide certain clues that the other model
failed to capture. For example in instance 2, Tri-LSTM
selects the response “...improve your french” to mes-
sage “bonjour madame” based on a retrieved assertion
“bonjour, IsA, hello in french”, while Dual-LSTM se-
lects an irrelevant response. Unsurprisingly, Dual-LSTM is
also able to select the correct response in some cases where
certain commonsense knowledge is necessary, as illustrated
in instance 3. Both models select “... pink or black” in
response to message “...what color shoes...”, even though
Dual-LSTM does not have access to a helpful assertion
“pink,RelatedTo, color”.

Informally speaking, such cases suggest that to some ex-
tent, Dual-LSTM (models with no memory) is able to en-
code certain commonsense knowledge in model parameters
(e.g., word embeddings) in an implicit way. In other cases,
e.g., instance 4, the message itself is enough for the selection
of the correct response, where both models do equally well.

Conclusion and Future Work

In this paper, we emphasized the role of memory in con-
versational models. In the open-domain chit-chat setting,
we experimented with commonsense knowledge as external
memory and proposed to exploit LSTM to encode common-
sense assertions to enhance response selection.

In the other research line of response generation, such
knowledge can potentially be used to condition the de-
coder in favor of more interesting and relevant responses.
Although the gains presented by our new method is not
spectacular according to Recall@k, our view represents
a promising attempt at integrating a large heterogeneous
knowledge base that potentially describes the world into
conversational models as a memory component.

Our future work includes extending the commonsense
knowledge with common (or factual) knowledge, e.g., to ex-
tend the knowledge base coverage by linking more named
entities to commonsense knowledge concepts (Cambria et
al. 2014), and developing a better mechanism for utilizing
such knowledge instead of the simple max-pooling scheme
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used in this paper. We would also like to explore the memory
of the model for multiple message response pairs in a long
conversation.

Lastly, we plan to integrate affective knowledge from Sen-
ticNet in the dialogue system in order to enhance its emo-
tional intelligence and, hence, achieve a more human-like
interaction. The question, after all, is not whether intelligent
machines can have any emotions, but whether machines can
be intelligent without any emotions (Minsky 2006).
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