
BIOINFORMATICS Vol. 20 no. 18 2004, pages 3604–3612
doi:10.1093/bioinformatics/bth451

Discovering patterns to extract protein–protein
interactions from full texts

Minlie Huang1, Xiaoyan Zhu1,∗, Yu Hao1, Donald G. Payan2,
Kunbin Qu2 and Ming Li3,1

1State Key Laboratory of Intelligent Technology and Systems (LITS), Department of
Computer Science and Technology, University of Tsinghua, Beijing, 100084, China
2Rigel Pharmaceuticals Inc, 1180 Veterans. Blvd, South San Francisco, CA 94080,
USA and 3Bioinformatics Laboratory, School of Computer Science, University of
Waterloo, N2L 3G1, Ontario, Canada

Received on April 2, 2004; revised on June 22, 2004; accepted on July 7, 2004

Advance Access publication July 29, 2004

ABSTRACT
Motivation: Although there are several databases storing
protein–protein interactions, most such data still exist only in
the scientific literature. They are scattered in scientific literat-
ure written in natural languages, defying data mining efforts.
Much time and labor have to be spent on extracting pro-
tein pathways from literature. Our aim is to develop a robust
and powerful methodology to mine protein–protein interactions
from biomedical texts.
Results: We present a novel and robust approach for extract-
ing protein–protein interactions from literature. Our method
uses a dynamic programming algorithm to compute distin-
guishing patterns by aligning relevant sentences and key
verbs that describe protein interactions. A matching algorithm
is designed to extract the interactions between proteins.
Equipped only with a dictionary of protein names, our system
achieves a recall rate of 80.0% and precision rate of 80.5%.
Availability: The program is available on request from the
authors.
Contact: zxy-dcs@tsinghua.edu.cn; mli@uwaterloo.ca

INTRODUCTION
Recently, there have been many accomplishments in literature
data mining for biology applications, many of which focus
on extracting protein–protein interactions that are scattered
throughout the scientific literature. Many research projects
have been devised to collect information on protein interac-
tions. Several databases have been constructed to store such
data, for example,Database of Interacting Proteins (Xenarios
et al., 2000; Salwinskiet al., 2004). However, most data in
these databases were accumulated manually and inadequately,
at high costs. Yet, scientists continue to publish their dis-
coveries on protein interactions in scientific journals, without
submitting their data to specific databases. As a result, most

∗To whom correspondence should be addressed.

protein interactions still exist only in the scientific literature,
written in natural languages and hard to be processed with
computers.

How to extract protein interaction information has been an
active research subject. Among all methods, natural language
processing (NLP) techniques are preferred and have been
widely applied. These methods can be regarded as parsing-
based methods. Both full and partial (or shallow) parsing
strategies have been attempted. For example, a general full
parser with grammars for biomedical domain was used to
extract interaction events by filling sentences into argument
structures (Yakushijiet al., 2001). No recall or precision rate
using this approach was given. Another full parsing method,
using bidirectional incremental parsing with combinatory cat-
egorial grammar (CCG),wasproposed (Parket al., 2001). This
method first localizes target verbs, and then scans the left and
right neighborhood of the verb respectively. The lexical and
grammatical rules of CCG are more complicated than those of
a general CFG. The recall and precision rate of the system were
reported to be 48% and 80%, respectively. Another full parser
utilized a lexical analyzer and context-free grammar (CFG),
to extract protein, gene and small molecule interactions with
a recall rate of 63.9% and precision rate of 70.2% (Temkin
and Gilder, 2003). Similar methods such as preposition-based
parsing to generate templates were proposed (Leroy and Chen,
2002), processing abstracts with a template precision of 70%.
Apartialparsingexample is the relationalparsing for the inhib-
ition relation (Pustejovskyet al., 2002), with a comparatively
low recall rate of 57%. In conclusion, the above methods
are inherently complicated, requiring many resources, and
performances are not satisfactory.

Another popular approach uses pattern matching. As an
example, a set of simple word patterns and part-of-speech
rules are manually coded for each verb in order to extract
special kind of interactions from abstracts (Onoet al., 2001).
Ono’s method outperforms parsing-based methods in that it
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is based on simple rules. It is able to handle long sentences
and achieves high performances with a recall rate of 85% and
precision rate of 94% for yeast andEscherichia coli. How-
ever, manually writing patterns for every verb is not practical
for general purpose applications. In GENIES, more complic-
ated patterns with syntactic and semantic constraints are used
(Friedmanet al., 2001). GENIES even uses semantic inform-
ation. However, GENIES’ recall rate is low. In the above
methods, patterns are hand-coded without exception. Because
there are many verbs and their variants describing protein
interactions, manually coding patterns for every verb and its
variants is not feasible in practical applications.

Most of the above methods process MEDLINE abstracts
(Ng and Wong, 1999; Thomaset al., 2000; Parket al., 2001;
Yakushiji et al., 2001; Wong, 2001; Leroy and Chen, 2002).
Because there is neither an accurate task definition on this
problem nor a standard benchmark, it is hard to compare the
results from various methods fairly (Hirschmanet al., 2002).
Furthermore, as MEDLINE has become a standard resource
for researchers, the results on the more difficult task of mining
full text have been largely ignored.

In this paper, we propose a novel and robust method to
discover patterns to extract protein interactions. It is based
on dynamic programming (DP). In the realm of homology
search between protein or DNA sequences, a global and local
alignment algorithm has been thoroughly researched (Needle-
man and Wunsch, 1970; Smith and Waterman, 1981). In our
method, by aligning sentences using dynamic programming,
similar parts in sentences could be extracted as patterns. Com-
pared with the previous methods, our proposal is different in
the following ways: first, it processes full biomedical texts,
rather than only abstracts; second, it automatically mines
verbs for describing protein interactions; third, this method
automatically discovers patterns from a set of sentences whose
protein names are identified, rather than manually creating
patterns as the previous methods do; last, our method has
low time complexity and it is able to process very long
sentences.

METHOD
In this section, we first discuss the sequence alignment
algorithm. Then the pattern generating algorithm is presen-
ted. At last, the matching algorithm for extracting interactions
between proteins is described.

Alignment algorithm
Suppose we have two sequencesX = (x1,x2, . . . ,xn) and
Y = (y1,y2, . . . ,ym). They are defined over the alphabet
� = {a1,a2, . . . ,al−1, ‘–’ } where eachai is called a char-
acter, and ‘–’ denotes a white-space or a gap. We assign a
score to measure how similarX andY are. DefineF(i, j) as
the score of the optimal alignment between the initial segment
from x1 to xi of X and the initial segment fromy1 to yj of Y .

F(i, j) is recursively calculated as follows:

F(i, 0) = 0,F(0,j) = 0,xi ,yj ∈ � (1a)

F(i, j) = max




0,

F(i − 1,j − 1) + s(xi ,yj )

F (i − 1,j) + s(xi , ‘–’ )

F (i, j − 1) + s(‘–’, yj )

(1b)

wheres(a,b) is defined as follows:

s(a,b) = log

[
p(a,b)

(p(a) ∗ p(b))

]
(2)

Here,p(a) denotes the appearance probability of charactera,
andp(a,b) denotes the probability thata andb appear at the
same position in two aligned sequences. Probabilitiesp(a),
p(a,b) can be estimated by formula (3a–b) with pre-aligned
training data:

p(a) = [C(a) + 1]
/∑

all x

[C(x) + 1] (3a)

p(a,b) = [C(a,b) + 1]
/ ∑

all pairs(x,y)

[C(x,y) + 1] (3b)

whereC(a) denotes the count of charactera appearing in the
training corpus, andC(a,b) denotes the number of aligned
pair (a,b) being observed in the training set. Note that (C(·)+
1) instead ofC(·) is used since characters or pairs are possibly
never observed in the training data because of data sparseness.
Thus, formula (3a–b) is a smoothed estimation.

However, the calculation of scores for a gap will be different.
In formula (2), whena or b is a gap, the scores cannot be
directly estimated by formula (3a–b) because of two reasons:
first, the case that a gap aligns to another gap will never happen
in the alignment algorithm since it is not optimal, therefore,
whats(‘–’,‘–’) exactly means is unclear; second, gap penalty
should be negative, but it is unclear whatp(‘–’) should be.
In DNA sequence alignment, these gap penalties are simply
assigned with negative constants. Similarly, we tune each gap
penalty for every character with some fixed negatives. Then a
linear gap model is used.

Given a sequence of gaps with lengthn which aligns to
sequenceX = (x1,x2, . . . ,xn)with no gaps, the linear penalty
is as follows:

γ (n) =
n∑

i=1

s(‘–’, xi). (4)

For sequenceX of length n and sequenceY of length
m, totally (n + 1)∗(m + 1) scores will be calculated by
applying formula (1a–b) recursively. Store the scores in
a matrix F = F(xi ,yi). Through back-tracing inF , the
optimal local alignment can be found. The local align-
ment algorithm can be found at http://learn.tsinghua.edu.
cn/homepage/2000315648/local_align.pdf.
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Table 1. Main tags used in the method

Tag name Tag description

PTN Special tag for protein name
GAP(‘–’) Tag for the gap
NN Noun, singular or mass
NNS Noun, plural
IN Preposition, subordinating conjunction
CC Coordinating conjunction
TO to
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-third person singular present
VBZ Verb, 3rd person singular present
RB Adverb
JJ Adjective

Table 2. Gap penalties for main tags

Tag Penalty Tag Penalty Tag Penalty

PTN −10 IN −6 VB −7
NN −8 CC −6 VBD −7
NNS −7 TO −1 VBG −7
VBN −7 VBP −7 VBZ −7
RB −1 JJ −1

In our method, the alphabet consists of three kinds of tags:
part-of-speech tags, as those used by Brill’s tagger (Brill,
1995); tagPTN for protein names; and tagGAP for a gap.
The main tags are listed in Table 1. Gap penalties for these
tags are shown in Table 2.

Pattern generating algorithm
In our method, a data structure called sequence structure is
used. It consists of a sequence of tags (includingPTN and
GAP) and word indices in the original sentence for each tag
(for tagPTN andGAP, word indices are set to−1). Through
the structure, we are able to trace which words align together.

A pattern structure is also devised, which is made up of
three parts: a sequence of tags; an array of word index lists for
each tag, where each list defines a set of words for a tag that
can appear at the corresponding position of a pattern; a count
of how many times the pattern has been extracted out from
the training corpus. With the structure, the pattern generating
algorithm is shown in Figure 1. The filtering rules used in
Figure 1 are listed in Table 3.

In the first step of the algorithm,useless tags are removed
from each sequence. Tags likeJJ (adjective) andRB (adverb)
are too common and can appear at almost every position in a

1

2

3

4

Fig. 1. Pattern generating algorithm. It has a time complexity of
O(n2) in the corpus sizen.

Table 3. Filtering rules

1. If a pattern has neither verb tag nor noun tag, reject it.
2. If the last tag of a pattern is IN or TO, reject it.
3. If the left neighborhood of a CC tag is not equal the right one in a pattern,

reject the pattern.

sentence; hence, if patterns include such kind of tags, they lose
the generalization power. Some tags such asDT (determiner)
only play a functional role in a sentence and they are useless
for pattern generation. Therefore, as illustrated in the first
step of Figure 1, we remove directly useless tags such asJJ,
JJS (superlative adjective),JJR (comparative adjective),RB,
RBS (superlative adverb),RBR (comparative adverb) andDT
from the sequences. Furthermore, to control the form of a
pattern, filtering rules shown in Table 3 are adapted. Verb
or noun tags define the action type of interactions, thus they
are indispensable, as the first rule shows. The second rule
guarantees the integrality of a pattern because tags likeIN
andTO must be followed by an object. The last one requires
symmetry between the left and right neighborhood ofCC tag.
Certainly more rigid or looser filtering rules can be applied to
meet special demands.

Furthermore, we use a thresholdd in the algorithm. If a
pattern appears less thand times, it will be discarded; other-
wise they will cause many matching errors. Through tuning
the threshold, the generalization and usability of patterns can
be controlled. The larger the threshold is, the more accurate
patterns are.

Pattern matching algorithm
To evaluate patterns generated previously, a matching
algorithm is explored. Because one pattern possibly matches a
sentence at different positions, the algorithm must be capable
of finding out multiple matches. Here if we think a pattern as
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a motif, and sentence as a protein sequence, then our task is
similar to finding out all motifs in the sequence.

First of all, matches scoring less than a threshold are use-
less because there is always short local alignment with a small
score even between entirely unrelated sequences. An align-
ment is short if the length of aligned segments is less than
three, because a protein interaction requires at least three tags
(a subject, an action word and an object). We would look for
multiple matches in a tag sequenceX = (x1,x2, . . . ,xn) and
Y = (y1,y2, . . . ,ym) is a pattern. The recurrence defined by
formulae (5a–b), is different from that of the pattern generat-
ing algorithm. Formula (5a) only allows matches to end when
they score at leastT .

F(0, 0) = 0

F(i, 0) = max

{
F(i − 1, 0)

F (i − 1,j) − T , j = 1, 2,. . . m
(5a)

F(i, j) = max




F(i, 0),

F(i − 1,j − 1) + s(xi ,yj )

F (i − 1,j) + s(xi , ‘–’ )

F (i, j − 1) + s(‘–’, yj )

(5b)

The total score of all matches is obtained by adding an extra
cell F (n + 1, 0) to the score matrixF , using (5a). By tra-
cing back from cell (n + 1, 0) to (0,0), the individual match
alignment will be obtained.

Because each pattern has different length, thresholdT in
formula (5a) should not be identical for different patterns.
Assume the sequence for a patternpi isY = (y1,y2, . . . ,ym),
then thresholdT is calculated as follows:

T = η

m∑
i=1

s(yi ,yi) (6)

Here, we take the factorη = 0.5×∑
s(yi ,yi) is the maximum

score when a pattern matches a sentence perfectly (Fig. 2).
From the algorithm, a match is accepted only when three

conditions are satisfied: first, a pattern has a local optimal
match with the sentence; second, words of the matching part
are inside the word set of the pattern; third, decision rules
are satisfied.

To illustrate the matching details, a measurement data
structurem Vector is defined as follows:

mV ector = (cLen, cMatch, cP tn, cV b), (7)

wherecLen is the length of the pattern;cMatch is the num-
ber of matched tags;cPtn is the number of protein name tag
(PTN) skipped by the alignment; andcVb is the number of
skipped verbs. Based on the structure, decision rules shown
in Table 4 are used. There are two parametersP andV used
in the decision rules, which can be adjusted according to the
performance of the experiments. Here, we takeP = 0 and

1

2

3

4

4 ;

4 ;

Fig. 2. Pattern matching algorithm. Its time complexity isO(|P | ∗
(|X| ∗ |p̄|)) in pattern set size|P |, sequence length|X| and average
length of pattern|p̄|.

Table 4. Decision rules

Input: two parametersP andV

1. if cMatch �= cLen, reject the match;
2. if cPtn> P, reject the match;
3. if cVb > V, reject the match;

V = 2. The first rule shows that the deletion of elements
in a pattern is inhibited. The second and third rules limit the
maximum numbers of skipped tagPTN andVB.

SYSTEM OVERVIEW
Our system uses the framework ofPathwayFinder (Yaoet al.,
2004). Its architecture is shown in Figure 3.

The external resource required in our method is a dictionary
of protein names, where about 60,000 items are collected from
both databases ofPathwayFinder and several web databases,
such asTrEMBL, SWISSPROT (O’Donovanet al., 2002) and
SGD (Cherryet al., 1997), including many synonyms. The
training corpus contains about 1200 sentences. It is explained
in detail in the section on results.

For an input sentence, first some filtering rules are adap-
ted to remove useless expressions such as citations (‘[1]’) at
the pre-processing phase. Then protein names in the sentence
are identified according to the protein name dictionary and the
names are replaced with a unique label. Subsequently, the sen-
tence is part-of-speech tagged by Brill’s tagger (Brill, 1995),
and then the tag of protein names is changed to tagPTN. There
are about 36 tags in the original Brill’s tagger, the majority
of which have been listed in Table 1. Last, the tag sequence
is added into the corpus at the training phase or processed by
the matching algorithm at the testing phase.
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Fig. 3. System architecture.

Because the pattern generating algorithm is aligning tag
sequences, the accuracy of part-of-speech tagging is cru-
cial. However, Brill’s tagger only got overall 83% accuracy
for biomedical texts because biomedical texts contain many
unknown words. Here we propose a simple and effective
approach called pre-tagging strategy to improve the accuracy.
It is described in the section on results at length.

We do not include the parameter estimation module in
Figure 3. About 200 aligned sentence pairs are collected in
advance, and formula (3a–b) and (4) are simply applied to
estimate the scores.

RESULTS
The corpus consists of about 1200 sentences. They are col-
lected by the following steps: first a web crawler program
is used to download biomedical papers of interest from the
internet with the keyword ‘protein–protein interaction’, and
the papers are sorted automatically according to their relev-
ance to the query; then the first 50 papers are selected, and full
texts are segmented into sentences, where the number of sen-
tences is about 65,536; then protein names in these sentences
are identified; finally, sentences with fewer than two protein
names are discarded. Note that the sentences which contain at
least two protein names may include no protein interactions
at all. Our corpus does not exclude such kind of sentences.

Our evaluation experiments include four tests: part-of-
speech tagging, mining verbs, extracting patterns and eval-
uating the precision and recall rate.

Part-of-speech tagging
As mentioned before, the accuracy of part-of-speech tagging
is crucial for our method. Thus, high accuracy of tagging is
necessary. Brill’s tagger consists of three parts: a lexicon, a
lexical rule set and a contextual rule set. To tag a sentence,
first of all each word is assigned an initial tag according to the
lexicon for known words. For unknown words, lexical rules
are applied and each rule gives a tag. Then contextual rules are
used to tune the initial tags. However, most lexical rules are
not suitable for unknown words in biomedical texts, causing

Table 5. Features used in morphology-based tagging

Feature Tag Examples

AllCaps NN CSN, APC/C
FirstLowRestCaps NN mHOS, rMGMT
ContainCapsAndGreek NN TNF-alpha
ContainCapsAndRoman NN TbR-I, CaMKII
ContainCapsDigit NN E3, Mdm2
FirstLowRestDigit NN p22, p24
ContainCapsSymbols NN APP+1, UbL[R23], p42/44, (H)Mdm2
TwoMoreCaps NN DHFRts, RNAi
Last_s_and_prev_Caps NNS SnRKs, AIPs
∗-VBD_or_VBG_or_

VBN_or_IN_or_JJ (∗
means any word)

JJ IIbeta-binding, B-bound, ubiquitin-like

Table 6. Part-of-speech tagging accuracy

Tag Without
pre-tagging (%)

With
pre-tagging (%)

Total
count

NN 68.3 92.4 139883
IN 98.8 99.7 60523
JJ 80.1 84.2 47988
NNS 94.7 96.9 32930
CC 91.9 92.3 17496
VBN 93.0 93.7 14664
RB 95.4 94.4 10464
VBD 85.4 85.5 10350
TO 99.5 99.5 7417
VB 96.9 97.1 5495
VBG 90.6 90.6 4750
VBZ 94.4 94.5 9213
VBP 79.2 79.1 6843
Overall 82.8 92.8 368016

a large number of tagging errors. Our idea is: first recognize
an unknown word using morphological features and assign a
tag to it; then apply Brill’s tagger with a pre-tagging strategy.
Table 5 shows features used in the morphology-based tagging.
The last feature of Table 5 indicates that if a word is hyphen-
ated by several words and the last word can be tagged asVBD,
VBG, VBN, IN andJJ, it will be tagged asJJ. If an unknown
word satisfies feature listed in the first column of Table 5, the
corresponding tag in the second column is assigned to it. We
call the tag a pre-tag. Then the following pre-tagging strategy
is applied:

(1) Do not apply lexical rules or contextual rules on pre-
tagged words;

(2) For the neighborhoods of pre-tagged word, apply
contextual rules according to the pre-tagged word.

The tagging results are shown in Table 6. The experi-
ment is performed on GENIA corpus which is the largest
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Table 7. Mined verbs describing protein interactions

activate conjugate mediate
abolish down-regulate modify
accelerate enhance prevent
affect inactivate phosphorylate
alter induce regulate
amplify infect stimulate
assemble inhibit suppress
associate interact transactivate
bind ligate ubiquitinate
block localize upregulate

annotated corpus in molecular biology domain available to
public (Ohtaet al., 2000). We use the file GENIAcorpus-
3.02.pos.txt in GENIA-v3.02. The pre-tagging strategy with
morphology-based tagging improves the accuracy ofNN,
JJ and NNS remarkably, while the accuracy of other tags
is not affected much. The overall accuracy is improved
to 92.8%.

Mining verbs
First, we will mine as many verbs as possible from the cor-
pus. The algorithm shown in Figure 1 is performed on the
whole corpus and one more filtering rule is used, besides those
in Table 3:

If the pattern has no verb tag, reject it.
With this rule, only patterns that have verbs are extracted.
Here the thresholdd is 10. It is comparatively high because we
want to obtain very accurate verbs for the subsequent experi-
ments. Totally 94 verbs are extracted as action words defining
interactions, out of 367 different verbs in the sentences. Dif-
ferent tense verbs that have the same base form are counted as
different ones. Among the extracted verbs, there are false pos-
itives which do not define interactions at all, such as ‘prevent’,
‘affect’, ‘infect’, ‘localize’. Such words describe a relation
between proteins, but do not semantically define the interac-
tions. Our algorithm cannot perceive the difference. There are
16 such false positives. Hence the accuracy is 83.0%. Among
the 273 eliminated words, there are no false negatives which
still define interactions but are not extracted.

Table 7 shows some verbs obtained. These verbs and their
variants, particularly the gerund and noun form (obtained
from an English lexicon), are added into a filtering words
list (FWL for short). For example, for verb ‘inhibit’, its
variants including ‘inhibition’, ‘ inhibiting’, ‘ inhibited’ and
‘ inhibitor’ are added intoFWL. At the current phase, we
add all mined verbs intoFWL, including false positives
because these verbs are also helpful in understanding pro-
tein interaction networks. More verbs are listed at http://
learn.tsinghua.edu.cn/homepage/2000315648/verbs.htm.

Extracting patterns
The pattern generating algorithm is performed on the whole
corpus withFWL. The thresholdd is 5 here. The rules in
Table 3, plus the following rule, are applied.

If the action word of a pattern is not in FWL, reject it.
This rule guarantees that the main verb or noun in each
pattern exactly describe protein interactions. The exper-
iment runs on about 1200 sentences, with threshold
d = 5, and 134 patterns are obtained (Fig. 4). Some
of them are listed in Figure 3. More patterns can be
found at http://learn.tsinghua.edu.cn/homepage/2000315648/
pattern.htm.

Evaluating precision and recall rate
In this part, three tests are performed. The first test uses 383
sentences that include keywordinteract or its variants. 293
of them are used to extract patterns and the rest are tested.
The second one uses 329 sentences that contain the key word
bind or its variants. 250 of them are used to generate patterns
and the rest are tested. The third one uses 1205 sentences
with all the keywords. 1020 are used to generate patterns, and
the rest are tested. As described before, we do not exclude
verbs such as ‘prevent’, ‘affect’, ‘infect’ and so on, there-
fore, relations between proteins defined by these verbs or
nouns are thought to be interactions. Note that the testing
and training sentences are randomly partitioned, and they
do not overlap in all these tests. The results are shown in
Table 8.TP is the number of correctly extracted interactions,
(TP + TN) is the number of all interactions in test sentences,
and (TP + FP) is the number of all extracted interactions.
Fβ=1 is defined as:

Fβ=1 = 2 ∗ recall∗ precision/(recall+ precision)

Some matching examples are shown in Figure 5. Simple sen-
tences assen 1–3 are matched by only one pattern. But it is
more common that several patterns may match one sentence
at different positions, as insen4 andsen5. In the examples
sen6 andsen7, the same pattern matches repeatedly at differ-
ent positions since we used a ‘multiple matches’ algorithm.
More examples can be found at http://learn.tsinghua.edu.cn/
home-page/2000315648/examples.htm.

DISCUSSION
We have proposed a new method for automatically generat-
ing patterns and extracting protein interactions. In contrast,
our method outperforms the previous methods in two main
aspects: first, it automatically mines patterns from a set of
sentences whose protein names are identified. In the state of
the art methods, patterns play an important role in extracting
pathways. However, writing patterns for each verb one by one
is impractical. Our method provides an approach to generate
such patterns. A pattern can be extracted with certainty as long
as it appears a sufficient number of times in the training set.
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Fig. 4. Pattern examples extracted from about 1200 sentences. The star symbol denotes a protein name. Words for each component of a
pattern are separated by a semicolon. Action words are not completely listed.

Table 8. The recall and precision experiments

Keyword TP TP+TN TP+FP Recall
(%)

Precision
(%)

Fβ=1

(%)

Interact 66 82 78 80.5 84.6 82.5
Bind 58 71 70 81.7 82.8 82.2
All verbs 183 229 228 79.9 80.3 80.2

Given a small thresholdd, even infrequent patterns could be
extracted. The more the data, the better the patterns are. In
essence, our method is a data-driven method.

Second, it is competent to process long and complicated
sentences from full texts. The performance of most parsers
falls sharply when processing long sentences. Some can only
process a limited number of words in a sentence. In contrast
to the previous methods (except Ono’s method), our method
based on dynamic programming is able to process such long
sentences fast and efficiently.

In our method, a thresholdd is used to control both the
number and the generalization of patterns. It is meaningful to
probe into the infrequent patterns filtered by a small threshold.
For example, on the 293 sentences containing keyword ‘inter-
act’ or its variants, patterns whose count equals one are
shown in Figure 6. Some patterns are reasonable, such as
‘PTN VBZ IN PTN IN PTN ’ (protein1 interacts with protein2
through protein3). Such patterns are rejected either because
of insufficient training data or infrequently used expressions
in natural language texts. Some are not accurate, such as
‘NNS IN PTN PTN PTN ’, because there must be a coordinat-
ing conjunction between the three continuous protein names,
otherwise it will cause many errors. Some are even wrong,

such as ‘PTN NN PTN ’ because there are never such seg-
ment ‘protein1 interaction protein2’ defining a real interaction
between protein1 and protein2. Some patterns, such as ‘PTN
VBZ IN CC IN PTN ’ which should be ‘PTN VBZ IN PTN CC
IN PTN ’ (protein1 interacts with protein2 and with protein3),
are not precise because the last decision rule in Table 3
is used.

Nevertheless, these patterns can be filtered out by a small
threshold. However, how to evaluate and maintain patterns
becomes a real problem. For example, when the pattern gen-
erating algorithm is applied on about 1200 sentences, with a
thresholdd = 0, about 800 patterns are generated, most of
which appeared only once. It is necessary to reduce such a
large number of patterns. A MDL-based algorithm that meas-
ures the confidence of each pattern is under development. The
patterns which cause many errors will be deleted. Further-
more, some similar patterns can be merged and those patterns
that are not observed can potentially be generated from similar
patterns.

Because our matching algorithm utilizes part-of-speech
tags, and our patterns exclude adjectives (JJ), interactions
defined by adjectives, such as ‘inducible’ and ‘inhibitable’,
cannot be extracted correctly by our method currently. This
can be illustrated by the example below, where the words in
bold are protein names.

“The class II proteins are expressed constitutively on
B-cells and EBV-transformed B-cells, and are inducible by
IFN-gamma on a wide variety of cell types.”

In the sentence, interaction betweenclass II proteins and
IFN-gamma that is defined by adjectiveinducible (tagged as
JJ) does not match any pattern.

To solve this problem, we are considering using word stem-
ming and morpheme recognition to convert adjectives into
their corresponding verbs with context.

3610

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/20/18/3604/202574
by Tsinghua University Library user
on 23 April 2018
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Fig. 5. Examples of protein interactions extracted from sentences. Words in bold are protein names. For every sentence, the matched patterns
are listed, followed by the corresponding results.

Fig. 6. Some patterns whose count equals one are generated by our algorithm. More examples can be found at http://
learn.tsinghua.edu.cn/homepage/2000315648/pattern_1.htm.

By analyzing the results, errors in the experiments can be
classified into three categories: (1) protein name identification
error. Although we use a dictionary-based tagging method,
there are also errors because of wrong lexical items and lack of
correct ones. (2) part-of-speech tagging errors. Incorrect tags
directly cause a failure in extracting interactions. (3) match
errors from the matching algorithm itself. We find that the
current matching algorithm is not optimal and causes approx-
imately one-third of total errors. This partially derives from the
simple decision rules used in the matching algorithm. These
rules may work well for some texts but partially fail for others
because the natural language texts are multifarious. With these
considerations, a more accurate and complicated matching
algorithm is under development.

CONCLUSION
In this paper, a method for automatically generating pat-
terns to extract protein–protein interactions is proposed and
implemented. The method is capable of discovering verbs and

patterns in biomedical texts. The algorithm is fast and able to
process long sentences. Experiments show that a recall rate
of about 80% and precision rate of about 80% are obtained.
The approach is powerful, robust, and applicable to real and
large-scale full texts.

Our future work will focus on pattern maintenance, and new
matching algorithms.
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