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ABSTRACT
Background Due to the high cost of manual curation of
key aspects from the scientific literature, automated
methods for assisting this process are greatly desired.
Here, we report a novel approach to facilitate MeSH
indexing, a challenging task of assigning MeSH terms to
MEDLINE citations for their archiving and retrieval.
Methods Unlike previous methods for automatic MeSH
term assignment, we reformulate the indexing task as
a ranking problem such that relevant MeSH headings are
ranked higher than those irrelevant ones. Specifically, for
each document we retrieve 20 neighbor documents,
obtain a list of MeSH main headings from neighbors, and
rank the MeSH main headings using ListNetea learning-
to-rank algorithm. We trained our algorithm on 200
documents and tested on a previously used benchmark
set of 200 documents and a larger dataset of 1000
documents.
Results Tested on the benchmark dataset, our method
achieved a precision of 0.390, recall of 0.712, and mean
average precision (MAP) of 0.626. In comparison to the
state of the art, we observe statistically significant
improvements as large as 39% in MAP (p-value
<0.001). Similar significant improvements were also
obtained on the larger document set.
Conclusion Experimental results show that our
approach makes the most accurate MeSH predictions to
date, which suggests its great potential in making
a practical impact on MeSH indexing. Furthermore, as
discussed the proposed learning framework is robust and
can be adapted to many other similar tasks beyond
MeSH indexing in the biomedical domain. All data sets
are available at: http://www.ncbi.nlm.nih.gov/
CBBresearch/Lu/indexing.

INTRODUCTION
As one of the largest repositories for biomedical
articles, PubMed comprises more than 20 million
documents to date. The current volume of the
biomedical literature and its rapid growth pose
great challenges for service providers in terms of
management, searching capabilities, and indexing.1

To facilitate these processes, the US National
Library of Medicine (NLM) developed the Medical
Subject Headings (MeSH)i, a controlled vocabulary
for describing various biomedical topics such as
diseases, chemicals, and drugs, to index articles in
MEDLINE. MeSH indexing has been shown to
greatly facilitate document retrieval,2 3 document
clustering,4 and bioinformatics research.5

Manually assigning MeSH terms to biomedical
articles is a complex, subjective, and time-consuming

task that requires human comprehension of the
articles and familiarity with the MeSH controlled
vocabulary. As a result, indexing consistency
between different indexers varies depending on
the type and category of indexing terms. For
instance, Funk and Reid (1983)6 reported
a consistency of 48.2% for MeSH main heading
assignment. Furthermore, it is difficult to assign
MeSH terms to citations immediately after they
become searchable online. According to the NLM
customer service, time to index varies greatly
between all of the different works that MEDLINE
indexes. According to their recent statistical
analysis, 25% of the citations are completed
within 30 days of receipt, 50% within 60 days,
and 75% within 90 days.
In addition, manual indexing is expensive. As

pointed out by Aronson et al (2000),7 ‘the total cost
of indexing at the NLM includes data entry, NLM
staff indexing and revising, contract indexing,
equipment, and telecommunications costs.’ Hence,
to help improve the consistency and timely avail-
ability of MeSH indexing and cope with the
increasing cost of human indexing in the era of flat/
reduced NIH budgets, much effort has been
devoted to developing tools that automatically
produce MeSH terms for biomedical articles. These
tools typically rely on one or more of the following
techniques. (1) Selecting MeSH terms from the
k-nearest neighbor documents as recommendations
for the target document.3 8 9 This technique is
based on the assumption that documents similar in
content would share similar MeSH term annota-
tions. (2) Using probabilistic models or machine
learning methods to learn the association between
the document text and a MeSH term.10e12 (3)
Using domain-specific knowledge resources such as
MetaMap13 and trigram.2 In 2000, the NLM
launched its own indexing initiative project7 to
investigate automatic indexing methods for
biomedical documents, which led to the develop-
ment of the Medical Text Indexer (MTI).14 MTI
can assist human annotators with indexing
recommendations in the form of MeSH
main headings and more recently, main heading/
subheading pairs.15 MTI currently relies on
a combination of techniques in both (1) and (3).
In line with the indexing initiative, the goal of

this work is to further investigate automatic
indexing methods to assist manual curation with
MeSH indexing recommendations. Building on
the aforementioned indexing technique (1), we
hypothesize that the application of a ranking
algorithm can significantly improve the quality of
automatic indexing recommendations, which
would be useful in daily indexing practice. Like
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methods based on the neighbor documents,8 9 our approach
obtains from neighbor documents an initial list of MeSH terms
for each target article because we observe that over 85% of the
gold-standard MeSH annotations for a target document are
present in its nearest 20 neighbors. Instead of simply summing
the affinity scores between the target document and its neigh-
bors, we approach this task as a ranking problem and adopt
a learning-to-rank algorithm to address it. Learning-to-rank
algorithms have been studied extensively in document infor-
mation retrieval and text mining communities.16 We adopted
ListNet17 in our approach because it fits our problem naturally
(detailed in the ‘Problem formulation and the learning algo-
rithm’ section). Furthermore, we created a set of novel features
for the learning algorithm such as the language translation
probability features and the query likelihood features.

METHODS
Overview of our approach
There are three steps in our approach, as shown in figure 1. First,
we adapt the PubMed Related Articles algorithm18 to retrieve
from the MEDLINE database k-nearest neighbors for each target
document with a modification so that MeSH terms are not
used in the computation of the neighbor documents. In other
words, the similarity between documents is solely based on the
words they have in common. In this regard, each common word
is assigned a numerical weight to represent its importance in
relation to the two documents in comparison. The similarity
between two documents is computed as the summed weights of
all of the terms the two documents have in common. Thus, for
a given document, its neighbors are identified as the most similar
(ie, with highest summed weights) documents found. We refer
interested readers to the online explanationii and Lin et al18 for
further information on this algorithm. We do so because such
information would not be available for those to-be-indexed
target articles in realistic circumstances. The optimal selection of
parameter k is explained in our experiment.

The second step is to collect all the MeSH terms assigned to
those k-nearest neighbor documents obtained in the previous
step. To compare with prior studies,9 14 we only considered the
main headings and removed subheadings attached to the main
headings. Let us see an example in figure 2: the three MeSH
terms: ‘Anti-Inflammatory Agents, Non-Steroidal/administration
& dosage’, ‘Anti-Inflammatory Agents, Non-Steroidal/chemistry’,
and ‘Anti-Inflammatory Agents, Non-Steroidal/therapeutic use’
condensed into a single MeSH main heading ‘Anti-Inflammatory
Agents, Non-Steroidal’ after discarding the three respective
subheadings ‘administration & dosage’, ‘chemistry’, and ‘ther-
apeutic use’. Note that MeSH terms mentioned later in this
paper are always referring to main headings as exemplified.

In the third step, each main heading in the initial list is
assigned a score by the ranking algorithm. The top N ranked
main headings are considered relevant to the target article and
can be subsequently recommended to human indexers. To follow
the lead of MTI,14 we set the number N to be 25.

Problem formulation and the learning algorithm
We approach the task of MeSH term indexing as a ranking
problem. Given a target article D, we first obtain an initial list of
MeSH main headings {MH1,MH2,.,MHn} from its neighbor
documents. Each main heading is then represented as a feature
vector as xi¼ (x1i,x2i, .,xmi), where m is the number of features.

The learning objective is to find a ranking function f(x) which
can assign a score to each main heading based on the feature
vector and subsequently use the scores to rank relevant main
headings of the target document ahead of those irrelevant ones.
We chose to use ListNet,17 a newly proposed learning-to-rank
algorithm that sorts results based on a list of scores, to learn
such a function as follows.
First, for the learning purpose we obtained a training set

comprising biomedical articles with human assigned MeSH
terms from MEDLINE (used as the gold standard). For each
target article in the training set, we obtain the corresponding
initial list {MH1,MH2,.,MHn} from its neighbors and label
a main heading 1 if it was manually assigned to the target
article, 0 otherwise. As a result, for the list of main headings
from its neighbor documents, we obtain a corresponding list {y1,
y2,.,yn}, where yie{0,1}.
Meanwhile, the ranking function f(x) can be learned to assign

a second score list F¼{f1,f2,.,fn} to these main headings. Each
score in Y and F measures the likelihood of assigning a specific
MeSH term to an article by human indexers and the ranking
function, respectively. Thus, the probability that a main heading
MHi can be placed at the first position of a ranked list can be
quantified, according to the two scoring schemas, respectively,
as: Pr(yi)fyi and Pr(fi)ffi. To avoid zero probabilities (yi or fi
might be zero), the exponential function is used:

Pr
�
yi
�
f

exp
�
yi
�

+n
j¼1exp

�
yj
�; Pr

�
fi
�
f

exp
�
fi
�

+n
j¼1exp

�
fj
�

Pr(y1),Pr(y2),.,Pr(yn) form a probability distribution as their
sum equals 1. This distribution derives from the gold standard.

Figure 1 An overview of our approach. MH, main heading.

Figure 2 Sample MeSH terms assigned to a MEDLINE article. The
terms inside the blue box are main headings, and those outside the blue
box are subheadings.

iihttp://www.ncbi.nlm.nih.gov/books/NBK3827/#pubmedhelp.
Computation_of_Related_Citations.
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On the other hand, Pr(f1),Pr(f2),.,Pr(fn) forms another distri-
bution, predicted by the ranking function. The goal of the
learning process is to do optimization such that the machine
predictions are maximally aligned with the gold standard. To do
that, we minimize the cross entropy between the two proba-
bility distributions as it measures the difference between two
distributions:

L
�
Y;F

� ¼ � +
n

j¼1
Pr
�
yj
�
*logPr

�
fj
�

(1)

In ListNet, the ranking function f(x) is defined as a simple
linear function, as follows:

fw
�
xi
� ¼ wTxi ¼ +m

l¼1

�
wl*xil

�
(2)

Then the gradient of loss function L(Y,F) with respect to the
parameter vector w can be calculated as follows:

Dw ¼ vLðY;FÞ
vw
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�vfw�xj�
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þ 1
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k¼1exp
�
fw
�
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exp

�
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�
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��vfw�xj�
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Formula (3) defines the gradient for only one list of features
vectors {x1,x2, .,xn}. The gradient for many lists of feature
vectors can be simply summed up over all those lists. During
training, after initialized to zeros, the w parameter vector is
updated with a gradient descent method: w¼w�h*Δwwhere h is
the learning rate.

From the above formulations, we can see that the learning is
performed on a set of lists of samples. The scores for a list of
samples, coming from either the gold standard (human anno-
tation) or prediction of the ranking function, are transformed to
a probability distribution. Thus the relationship among samples
in a list is encoded into a probability distribution. In the context
of MeSH indexing, each document comes with a corresponding
list of MeSH term candidates (see figure 1) to be ranked. The
gold standard of each article is represented as a list of relevant
MeSH terms (as opposed to only one relevant label for each
instance in many other learning problems). Thus, our selection
of the list-wise learning-to-rank algorithm (ListNet) fits squarely
to this problem.

Features
We developed various novel features which can be categorized
into several groups. When we computed all these features, both
the MeSH term and the source text (the title and abstract) were
preprocessed by a number of natural language processing tech-
niques. The preprocessing includes tokenization (segmenting
sentences into words), regularization (removing punctuations
and digits), and normalization (converting words into base
forms).

Neighborhood features
In this work, we computed two kinds of neighborhood features:
the first counted the number of neighbor documents in which
a candidate MeSH term appears. For the second feature, instead
of counting documents, we summed document similarity scores.
The two features are formulated as follows:

freqðMHjDÞ ¼ jfDijMH˛Di;Di˛Ukgj (4)

sim
�
MHjD� ¼ +

MH˛Di ; Di˛Uk

simðD;DiÞ (5)

where Uk is the k-nearest neighbors for a target document D and
sim(Di,Dj) is the similarity score between a target document and
its neighbor document. The motivation for constructing these
features is twofold. First, if a MeSH term appears in more
neighbor documents, it is more likely to be assigned to the target
document. Second, if a MeSH term appears in documents that
are more similar to the target document, it is more likely to be
relevant to the target document. As described in the ‘Compar-
ison to other methods’ section, when used alone these two
features represented two baseline ranking strategies and they in
fact showed very strong performance.

Word unigram/bigram overlap features
We counted the number of unigrams/bigrams overlapping
between the MeSH term and the title (or the abstract), dividing
by the total number of unigrams or bigrams in the MeSH term.
A unigram consists of a single word and a bigram two sequential
words. Accordingly, we generated two features: one counted
unigram overlap with the title, and the other counted bigram
overlap with the title and abstract. These two features give
a direct way of measuring the surface similarity between the
MeSH term and the document text.

Translation probability features
The IBM translation model19 was used to compute the trans-
lation probability featureethe probability of translating the title
or abstract into a set of MeSH terms. The motivation behind
this is that the article was written in the author ’s language,
while the set of MeSH terms was selected from the indexing
perspective using MeSH as a controlled vocabulary. Thus using
statistical language translation models may bridge the gap
between the two types of ‘languages’ (authors vs indexers). We
collected 13 999 pairs of (MHs, Title) and (MHs, Abstract),
respectively, where MHs is the list of main headings assigned to
an article. Then we used the expectation maximization algo-
rithm to estimate the translation probability Pr(t|s), where t is
a single word in the main headings (as a target language) and s
a single word in the article title and abstract (as a source
language). This translation probability was also used in
computing query-likelihood features (see below). Finally, the
following formula gives the probability of translating a piece of
text into a MeSH term using the estimated Pr(t|s):

Pr
�
MHjText� ¼ 1

nm
Ym

ti˛MH; i¼1

+
n

sj ˛Text; j¼1
Pr
�
ti
��sj� (6)

where ti and si are single words in a MeSH term and text,
respectively. Text represents the title or abstract, respectively, so
that we have two separate translation probabilities. Note that
a MeSH term may contain multiple words.

Query-likelihood features
This class of features computes likelihood scores between
a MeSH main heading and the title and abstract of an article
(D in the formulas below) when using the MeSH term as
a query (Q in the formulas). The advantage of using such
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query-likelihood scores is that they give a probability of whether
a MeSH term should be assigned to the article, instead of only
binary judgment. In most cases, there is only indirect evidence
for mapping a main heading to an article. We used two genres of
query models: translation-based query models20 and the very
classic Okapi model,21 as follows:

Pr
�
QjD� ¼

Y
q˛Q

�
+
w˛D

Pr
�
q
��w�

��
1� l

�tf ðw;DÞ
jDj þ l*Pc

�
w
���

(7)

Pr
�
QjD� ¼

Y
q˛Q

��
1� b

�tf ðq;DÞ
jDj þ b +

w˛D
Pr
�
q
��w�tf ðw;DÞ

jDj
�

(8)

okapi
�
Q;D

� ¼ +
q˛Q

tf ðq;DÞlogððN� df ðqÞ þ 0:5Þ=ðdf ðqÞ þ 0:5ÞÞ
0:5 þ 1:5*ðjDj=avgðjDjÞÞ þ tf ðq;DÞ

(9)

where Pr(q|w) is the probability of translating word w in the
source text into the target language (main headings), estimated
with the IBM model; tf(w,D) is the count of w occurring in
document D; |D| is the total counts of single words in docu-
ment D; Pc(w) is the probability of word w occurring in a back-
ground corpus; this is obtained from a unigram language model
that was estimated on the 13 999 articles; df(q) is the number of
documents containing word q; avg(|D|) is the average length
of documents in the training corpus; and N is the total number
of documents (13 999).

Computing df(q) and avg(|D|) requires a particular corpus.
We used the same 13 999 documents as those used in the
translation model. The parameters, l and b, in formula (7) and
formula (8), respectively, were empirically set to be 0.2.

Synonym features
The MeSH thesaurus provides synonyms for each main heading.
Such synonyms are known as entry terms. We designed two
binary features (the value is either 0 or 1): one judges whether
one of the entry terms can be exactly matched to the document
text (title and abstract); and the other judges whether there
exists an entry term whose unigram words have all been
observed in the document text.

Evaluation metrics
We use precision, recall, F score, and mean average precision
(MAP) to evaluate the ranking performance. Given a ranking list
H1

N¼h1h2.hN with top N items, the four metrics are defined as
follows:

Precision ¼ +D c
�
N;D;HN

1

��
+DN

Recall ¼ +D c
�
N;D;HN

1

��
+D ANðDÞ

F-score ¼ 2*precision*recall
precision þ recall

APðDÞ ¼ 1
ANðDÞ+r

I
�
hr
�
*
c
�
r;D;Hr

1

�
r

MAP
�
U
� ¼ 1

jUj +D˛U
APðDÞ

where c(r,D,H1
r) is the number of correct main headings among

the top r ranked main headings; AN(D) is the total number of
gold-standard main headings assigned to document D; I(hr) is an
indicator function, whose value is 1 if the r-th main heading hr
was assigned to the document and 0 otherwise; and U is the
document collection of the test dataset. AP(D) is the average
precision for document D, which computes all main headings in
the list (not limited to top N items only). MAP(U) is the MAP
over all test documents in collection U. AP measures the quality
of a ranking list: perfect ranking corresponds to an AP of 1.0. N is
set to be 25 in this paper.

RESULTS
Datasets
To train the ranking algorithm, we randomly selected a set of 200
MEDLINE documents where their corresponding MeSH terms
were recently assigned (from 2002 to 2009), named Small200. We
used two datasets of different sizes for testing. The first test
dataset is named NLM2007 and was obtained from the NLM
indexing initiative.14 We selected NLM2007 because it has also
been used in benchmarking the same task by other methods in
recent studies.9 14 The second test dataset contains 1000
randomly selected MEDLINE documents, and we named it
L1000. To gain a better understanding of how our approach
performs on a more general dataset, we chose to use L1000
because it consists of a larger number of citations. In addition,
there is a longer time span for citations in L1000 with respect to
when the MeSH main headings were added to the corresponding
citations (ie, spanning over 48 years from 1961 to 2009). Title and
abstract are available for every document in these datasets. Full
text was not considered in this study because information in full
text was found to be of limited use for the automatic production
of MeSH indexing recommendations.22 In addition, free access to
full text is still limited in scope. The statistics of the three data-
sets are listed in table 1. We can see that the average number of
main headings is relatively stable across the three datasets.
As described in the ‘Features’ section, in addition to the

above datasets, we collected 13 999 documents from the
MEDLINE database to train the translation model (Pr(q|w) in
formulas 7e9) and the background language model (Pc(w) in
formula 7). This dataset was also used to compute the average
length of documents (avg(|D|) in formula 9) and the document
frequency for each word (df(q) in formula 9). These probabilities
and values were computed before we trained the learning
algorithm. These 13 999 documents have no overlap with any of
the three datasets.

Comparison to other methods
We trained the ranking algorithm on Small200 and tested it on
NLM2007. Since NLM2007 has only 200 documents, we further

Table 1 Detailed information about the three datasets used in this study

Dataset
Number of
citations

Total number of
main headings

Average number
of main headings

When main headings
were curated Data availability

Small200 200 2736 13.7 2002e2009 Freely available

NLM2007 200 2737 13.7 1997e2001 e

L1000 1000 12145 12.1 1961e2009 e
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tested the learned model on L1000 (1000 documents). The
learning rate h and the number of iterations in the model were
empirically set to be 0.01 and 100, respectively. All the feature
values were normalized to (0,1) using the maximum values of
each feature. For comparison with prior studies, the number of
neighbors was set to be 20. The optimal number of neighbor
documents will be further discussed in the next section.

We compared our approach to four methods, as listed in
table 2. The first system we compared with is NLM’s MTI
system.14 The second system used reflective random indexing9

to find similar documents. The third and fourth ranking strat-
egies are based on neighborhood features: neighborhood
frequency as defined by formula 4, and neighborhood similarity
as defined by formula 5. The reason we used the two neigh-
borhood ranking strategies for comparison is that we considered
them as strong baseline methods.

As shown in table 2, the last three ranking strategies show
substantial improvements over MTI and reflective random
indexing, while MTI and reflective random indexing have
comparable performance to each other. Moreover, the MAP of
our method (0.626) represents a 39.1% improvement over that
of MTI (0.450). Note that the MTI’s results in table 2 are
slightly different from those on the web page (overall precision
0.335, overall recall 0.559)iii. This is because we reprocessed the
documents in the set using MeSH 2010 (vs MeSH 2007 on the
web page).

To demonstrate whether the learning algorithm has signifi-
cant improvements over the neighborhood ranking criteria, we
conducted several significance tests: binomial test,23 24 the
paired t test,25 and Wilcoxon signed rank test.26 All the signifi-
cance tests demonstrate that the learning algorithm significantly
outperforms the two neighborhood ranking strategies, with
a p value of less than 0.001. These tests were performed with
respect to MAP.

To further assess the learning algorithm on a larger and more
general dataset, we evaluated the approach on L1000. We trained
the model on the same Small200 set (200 documents) and tested
it on L1000 (1000 documents). We also obtained MTI’s results
on L1000. Comparative results, as shown in table 3, demonstrate
significant differences (p<0.001 with all the three statistical
hypothesis tests) between the learning algorithm and the
neighborhood ranking strategies. Again, both baseline ranking
strategies and our learning-to-rank algorithm achieved substan-
tially better performance over the MTI system. And notably, the
relative difference between our approach and MTI is steady
across the two datasets.

Choosing the number of k-nearest neighbors
We demonstrate here how many neighbor documents are
optimal for this task. In principle, the more neighbors were
chosen, the more gold-standard MeSH terms of a target docu-
ment would be found available in its neighbors’ annotations,
resulting in a higher recall upper bound for our method.
However, with more neighbors to be included, there is
a tradeoff. That is, the number of to-be-ranked MeSH term
candidates will increase significantly as we consider more
neighbors. The statistics shown in table 4 demonstrate this. We
see from both datasets that with 20 neighbors a fairly high
upper-bound recall can be observed (about 85% of gold-standard
annotations were available in all the main heading candidates),
and the average number of main headings to be ranked is about
100.
To investigate the effect of the number of neighbors on

the performance, we experimented with different numbers of
neighbor documents. We trained a model on Small200 and tested
it on NLM2007. The performance curves are presented in figure 3.
As illustrated, the performance becomes relatively steady when
20 or more neighbors are used. Although the best performance
(precision¼0.392, recall¼0.717) is observed when 40 neighbors
were used (with over 160 main headings to be ranked on
average), the performance is not significantly different to that
with 20 neighbors (precision¼0.390, recall¼0.712).

Feature study
To investigate the impact of different features, we performed
a feature ablation study. The features used in this study were
divided into five groups. For each round of this study, we
removed one group of features from the entire feature set,
trained the model on Small200, and tested the performance on
NLM2007.
The experimental results with different features are shown in

table 5. When the neighborhood features were removed (the
third row), the performance dropped remarkably, indicating that
the two features are critical in maintaining high performance.
Hence, we experimented with only the two neighborhood
features and present the results in the last row. Statistical
significance tests show that there is a significant difference in
performance (p<0.001 with all the three statistical hypothesis
tests) using all features versus using only neighborhood features.
This result shows that although removing other groups of
features did not result in a significant decrease in performance,
the best performance was achieved only when all features were
combined. In other words, combining all other non-dominant
features indeed contributes to significant improvements.
It must be mentioned that these features are not independent.

For example, the four query likelihood features correlate with
the translation probability features (see formulas 6 and 7) and
the unigram/bigram overlap features. Thus the study presented

Table 2 Precision, recall, F-score, and MAP for different methods

Method Precision Recall F score MAP

MTI system 0.318 0.574 0.409 0.450

Reflective random indexingy 0.372 0.575 0.451 N/A

Neighborhood frequency 0.369 0.674 0.476 0.598*

Neighborhood familiarity 0.376 0.677 0.483 0.604*

Learning-to-rank algorithm 0.390 0.712 0.504 0.626

The comparison was performed on the NLM2007 dataset. Statistical significance tests were
performance on mean average precision to compare the two baseline ranking strategies
with our learning-to-rank algorithm.
*p<0.001, indicating that the performance of both baseline strategies was significantly
lower than the learning-to-rank algorithm.
yWe directly used the best results from the paper of Vasuki and Cohen (2009).9

MAP, mean average precision; MTI, Medical Text Indexer.

Table 3 Precision, recall, F score, and MAP for different methods

Method Precision Recall F score MAP

MTI system 0.302 0.583 0.398 0.462

Neighborhood frequency 0.329 0.679 0.443 0.584*

Neighborhood similarity 0.333 0.687 0.449 0.591*

Learning-to-rank algorithm 0.347 0.714 0.467 0.615

The comparison was performed on the L1000 dataset. Statistical significance tests were
performance on mean average precision to compare the two baseline ranking strategies
with our learning-to-rank algorithm.
*p<0.001, indicating that performance of both baseline strategies was significant lower
than the learning-to-rank algorithm.
MAP, mean average precision; MTI, Medical Text Indexer.

iiihttp://ii.nlm.nih.gov/Eval_Analysis/Eval_2007/summary.shtml.
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here (by simply removing one group of these features) ignores
the correlation among those features. Further investigation on
feature correlation might be considered in future studies.

DISCUSSION
Comparison with other systems
MTI14 relies on two parallel paths to rank and recommendMeSH
terms: (1) MetaMap indexing which maps phrases in the text to
UMLS (Unified Medical Language System) concepts and restricts
those concepts to MeSH terms using synonyms, associated
terms, and inter-concept relationships27; and (2) PubMed Related
Articles which uses related documents to rank MeSH terms.18

Sophisticated filtering strategies are applied to combine the two
paths. The reflective random indexing system9 retrieves neighbor
documents using a method similar to the PubMed Related
Citations path employed byMTI. Main heading candidates from
neighbor documents are then scored by summing document
similarity scores where low scored candidates are filtered.

Different from MTI and reflective random indexing, our
method is a supervised machine learning algorithm which
combines various statistical features together. Although both
MTI and reflective random indexing have a similar k-nearest
neighbor component, they are not as competitive as the neigh-
borhood ranking strategies. We conjecture that this may be
partially due to the filtering strategies they employed, or possibly
because of the lack of a learning process. Instead, we ranked all
the main headings in the initial lists with the learning algorithm.
We did not filter any candidates in neighbor documents.

Speaking of using neighbor documents for MeSH term
recommendation, Delbecque and Zweigenbaum28 recently
investigated computing neighbor documents based on authors’
other prior publications and the referenced citations. The upper-
bound recall of their method seems to be comparable to ours.

However, their results are not directly comparable to ours (or
others such as MTI) because their assessment was not carried
out on the commonly used NLM2007 data set.

Performance ceilings and limitations
All methods that rely on neighbor documents have performance
ceilings. The average number of annotations per document in
our datasets is about 13. Therefore, when recommending 25
main headings for a given document, the upper-bound precision
is about 0.520. As shown in table 4, for the NLM2007 dataset,
the upper bound precision and recall are 0.547 and 0.856,
respectively, with 20 neighbor documents. Our best performance
yielded a precision and recall of 0.390 and 0.712, respectively. For
the L1000 dataset, the upper bound precision and recall are 0.485
and 0.853, respectively, while our best performance gives 0.347
and 0.714 accordingly. Although precision is lower than recall,
‘this corresponds to the observation that indexers will tolerate
some inappropriate terms as long as many useful are presented
to them.’22 There is still space to improve, but not surprisingly,
improving the performance with fewer recommended MeSH
terms will be even more challenging.
Our approach shares the same limitations with MTI’s Related

Citations component14 and the reflective random indexing
approach,9 as all these approaches rely on neighbor documents’
annotations. As a result, this genre of methods is limited as
regards recommending MeSH terms that have been recently
added to the MeSH vocabulary as such terms may not yet have
been assigned to any document. MTI compensates for the
shortcomings of the k-nearest neighbor approach by combining
it with a natural language processing approach, which specifi-
cally boosts the suggestion of terms newly added in MeSH. For
comparability with both MTI and reflective random indexing
results, the top 25 recommended terms were considered in the
evaluations. As shown in table 5, this choice results in an upper
bound in recall.

Implications of this research
Impact on indexing practice at NLM
The objective of this work is to investigate automatic indexing
methods to enhance current indexing practices. Since 2002,

Figure 3 The ranking performance (y-axis) varies with different
number of neighbor documents (x-axis). MAP, mean average precision.

Table 4 The upper-bound recall and average number of main headings with different number of neighbor documents

Dataset Measure

Number of neighbor documents

5 10 15 20 25 30 35 40

NLM 2007 Upper-bound recall 0.704 0.793 0.832 0.856 0.871 0.882 0.891 0.898

Number of main heading candidates 38.8 64.1 83.6 102.2 119.7 136.4 151.7 166.4

L1000 Upper-bound recall 0.702 0.786 0.825 0.853 0.870 0.882 0.891 0.899

Number of main heading candidates 37.3 60.9 81.5 99.8 117.2 133.5 148.8 163.6

Both NLM2007 and L1000 datasets were used in the experiments.

Table 5 Feature ablation study

Feature set Precision Recall F score MAP

All features 0.390 0.712 0.504 0.626

Neighborhood features 0.315* 0.575* 0.407* 0.435*

Unigram/bigram features 0.389 0.711 0.503 0.626

Translation probability features 0.389 0.711 0.503 0.626

Query likelihood features 0.385 0.704 0.498 0.626

Synonym features 0.385 0.703 0.497 0.618

Only neighborhood features 0.370* 0.677* 0.478* 0.602*

In rows starting with a minus sign (�), we trained and tested the learning algorithm using
all but the given set of features. Those marked with asterisks are significant worse than the
accordant measures using all features (p<0.001 with all the three statistical significance
tests).
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MeSH main heading recommendations automatically produced
by MTI have been made available to NLM indexers in the form
of a pick list. This recommendation list mainly serves two
purposes. First, it is used as an educational tool. When used in
training, the list is shown to teach novice indexers how to select
indexing terms appropriately. Second, it is used as an indexing
assistant. The list allows indexers to select desired MeSH terms
with only one click per term without having to type or look up
individual terms. Hence, improving the quality of the MTI
recommendation list has been an on-going effort at NLM,
involving close collaboration between researchers and indexers.
Improvements to the recommendation list shown to benefit the
indexing practice in research studies are deployed in production.
For instance, subheading attachment recommendations were
deployed in 2008.15 As shown by comparison results, our
approach holds great potential to be used for generating the
recommendation list in practice and to subsequently improve
the indexing quality and productivity. Another practical impli-
cation would be to adapt our approach for use in the current
MTI system with the aim of improving it. In particular, the
proposed supervised learning-to-rank algorithm might be
a better approach for MTI than its current filtering strategies in
integrating results from both MetaMap and PubMed Related
Citations.

Other applications of the learning-to-rank method
Generally speaking, ranking-based approaches have advantages
over classification-based approaches because in certain tasks29 30

it is difficult to choose negative instances when only positive
instances are labeled. One example of such a task is to identify
a database record for a given gene/protein name. As detailed in
Lu et al,31 gene/protein names are notoriously ambiguous, and
thus one name usually maps to multiple database records.
Traditional classification-based methods attempt to predict each
possible matched record to be either relevant or irrelevant to the
target gene/protein mention. By contrast, the learning-to-rank
method approaches the same issue as a ranking problem: to sort
all matched records in a list and rank the relevant record to be at
the top position on the list. As demonstrated by Huang et al,29

the learning-to-rank approach shows favorable performance over
other classification-based methods.

CONCLUSION AND FUTURE WORK
We presented a ranking-based method to recommend MeSH
terms to annotate biomedical articles. The method retrieved
k-nearest neighbor documents, and then it obtained an initial list
of MeSH term candidates from the neighbors. The candidates
were ranked and the document was annotated with top
recommended MeSH terms. The method was assessed with
large-scale experiments; significant improvements over the state
of the art were observed on two representative datasets. The
impact of different features was also investigated.

Future work will focus on improving the precision while
maintaining the recall, with fewer recommended annotations.
In this paper we recommend 25 MeSH main headings for
each article. However, the average number of main headings
is actually about 13. Thus, fewer recommendations would be
more attractive for real use. Another interesting perspective
would be to assess the practical potential of our approach.
Specifically, the system could be evaluated on a corpus of recent
citations in order to assess the impact on the recommendation of
recent MeSH terms. Finally, although we have received some
preliminary positive feedback when presenting the recommen-
dation list obtained from our method compared to MTI, more

experiments are needed to warrant the use of our approach in
the practical setting for MeSH indexing. Specifically, feedback
could be sought from indexers through a controlled experiment
where one group of participating indexers would be shown
indexing recommendations produced by the current version of
MTI, while another group would be shown indexing recom-
mendations produced by our method. In this setting, we could
assess time spent on indexing articles, the number of recom-
mendations actually used by the indexers as well as qualitative
comments from the indexers. A subsequent analysis of these
measures would then suggest which method offers better
productivity, accuracy, and indexer satisfaction.
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