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Story Ending Selection by Finding Hints
from Pairwise Candidate Endings

Mantong Zhou,Minlie Huang,Xiaoyan Zhu

Abstract—The ability of story comprehension is a strong
indicator of natural language understanding. Recently, Story
Cloze Test has been introduced as a new task of machine
reading comprehension, i.e., selecting a correct ending from
two candidate endings given a four-sentence story context. Most
existing methods for Story Cloze Test are essentially matching-
based that operate by comparing an individual ending with a
given context, therefore suffering from the evidence bias issue:
both candidate endings can obtain supporting evidence from the
story context, which misleads the classifier to choose an incorrect
ending. To address this issue, we present a novel idea to improve
story comprehension by utilizing the hints which are obtained
through comparing two candidate endings. The proposed model
firstly anticipates a feature vector for a possible ending solely
based on the context, and then refines the feature prediction using
the hints which encode the difference between two candidates.
The candidate ending whose feature vector is more similar to
the predicted ending vector is regarded as correct. Experimental
results demonstrate that our approach can alleviate the evidence
bias issue and improve story comprehension.

Index Terms—Machine Reading Comprehension, Story Com-
prehension, Commonsense Reasoning, Neural Networks

I. INTRODUCTION

STORY comprehension is a fundamental but challenging
task in natural language understanding [1], which can

enable computers to learn about social norms, human behavior,
and commonsense knowledge. Recently, Story Cloze Test
(SCT) [2], [3] was introduced to evaluate the machinery ability
of story understanding, story generation, and script learning.
Story comprehension differs significantly from previous ma-
chine comprehension tasks [4]–[7] in that SCT focuses on
reasoning with implicit knowledge by requiring a system to
select a correct ending from two candidates, given a four-
sentence story context.

Most existing models [8], [9] for story ending prediction
are motivated by lexical or semantic matching, through either
attention mechanism or feature engineering, which search for
important linkages between a story context and a candidate
ending. They suffer from the issue of evidence bias: both the
wrong and correct endings can obtain sufficient support from
the story context. As illustrated in Fig. 1, the wrong ending
(in red) and the correct ending (in green) can be supported by
the red-colored evidence and the green-colored evidence in the
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Lina went to see how candy 
canes were made for the first 

time.

She watched as the workers 
added dye to the hot candy.

Then, they stretched it out to 
make it shiny.

Finally, they shaped it into a 
cane and let it cool.

Lina now knew that making 
candy canes was easy.

She felt a new appreciation for 
candy canes.

Lina => Lina
made/make => making

candy => candy 

She => She
candy canes => candy canes

the first time => new

Lina now knew that making 
candy was easy.

Candidate
Endings:

Context: Evidence:

Fig. 1. Evidence bias issue: both a wrong ending (in red) and a correct
ending (in green) can obtain sufficient evidence from the story context.

story context, respectively. Thus, it is difficult for matching-
based models to distinguish such cases. The situation is not
rare because both correct and wrong endings are written to
fit the world of a story in SCT during the construction of
this corpus. For instance, the protagonist typically appears in
both endings [3], [8], and the event in a wrong ending is also
closely related to the story context. Hence, it is challenging
to identify the correct ending since the wrong ending is also
highly plausible.

Statistics on 3,742 SCT stories show that, 35.9% words
in correct endings can be found in the corresponding story
contexts, but 36.2% words in wrong endings also appear in
the contexts. In 34.9% stories, word overlap between the
wrong ending and the context is larger than that between the
correct ending and the context. Furthermore, we investigate
whether terms (such as ‘have lunch’) in an ending are relevant
to the context. Terms in an ending which have ConceptNet1

relations to the terms in a story context are defined as related
terms. In 37.7% stories, the wrong ending possesses more
related terms than the correct ending. These simple statistics
further demonstrates that the evidence bias issue is commonly
observed in this corpus.

To avoid the evidence bias issue caused by individual match-
ing, there is a natural two-stage process: first read the context
solely and then consider the two candidates simultaneously.
Inspired by FESLM [10] which used a language model to
evaluate story endings, we argue that a story comprehension
model should have the ability to anticipate a reasonable ending
after reading the context. The ending selection thus depends
on predicting a possible ending rather than merely matching
an individual candidate ending to the context. However, an-
ticipating proper endings solely based on the story context is
difficult since there are too many basic elements describing

1A commonsense knowledge base, see http://conceptnet.io.
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the characters, events, and sentiments in a story. It is hard to
decide which elements are useful to compose correct endings.
Instead, if we have some hints about what is correct or
reasonable, it would be easier to identify the correct ending.
As shown in Fig. 1, since both candidates are accordant with
the context with respect to the character, we should ignore the
useless element (‘Lina / She’→‘Lina / She’) and emphasize
the valuable ones attached to the correct candidate (‘first
time’→‘new appreciation’). Accordingly, we can obtain hints
by comparing two candidate endings and thus predict a correct
ending more easily.

In this paper, we present a novel model for choosing a
correct story ending from two candidates given the story
context. Our model is a two-stage process: First, read the
story context without any biased information and anticipate
an ending; Second, refine the story ending prediction by
utilizing hints via comparing two candidate endings. Our
model makes a preliminary prediction of a reasonable ending
and then refines the prediction using the hints that manifest the
difference between two candidate endings. The contributions
of this work are in three folds:
• We study the evidence bias issue which occurs in most

existing methods for story ending selection. Our model
considers both candidates simultaneously for story ending
selection, which is the major departure from existing
methods that compare a candidate ending separately with
the story context.

• We propose an approach, HintNet, to improve story
comprehension by employing story hints which explicitly
encode the difference between two candidate endings.
Different hint representations are studied, and the con-
nections between hint representations and surface words
are discovered.

• Experimental results show that HintNet alleviates the is-
sue of evidence bias and improves story ending selection.

II. RELATED WORKS

Story comprehension is a challenging task in natural lan-
guage understanding since narrative stories capture rich causal
and temporal commonsense relations. Understanding stories
involves textual semantic understanding, logical reasoning
and natural text generation. A large body of work in story
comprehension has focused on scripts learning [11]. Narrative
chains [12], narrative schemas [13], script sequences [14], and
relgrams [15] are proposed to learning narrative/event repre-
sentations. Several groups have directly addressed script learn-
ing by focusing exclusively on the narrative cloze test [12], in
which a system predicts a held-out event (a verb and its ar-
guments) given a set of observed events. Previous works [16],
[17] showed that language-modeling techniques perform well
on original narrative cloze test. Story Cloze Test (SCT) [2],
[3] is thus introduced as a new evaluation framework. Instead
of predicting an event, the system is required to select a
reasonable ending from two given candidates.

As a unique branch of machine reading comprehension,
SCT requires to select a correct ending from two candidates
given a story context. It is different from classic reading

comprehension tasks in a form of question answering [4]–[6],
which require a system to find the answer to a specific question
in a given document. In classic reading comprehension tasks,
most answers can be identified by supporting facts through
matching a token span of the document to the question,
without misleading evidence. By contrast, in SCT, the two
candidate endings are both highly plausible, and a wrong
ending can also obtain sufficient evidence from the story
context, thus misleading matching-based classifiers.

Previous studies on Story Cloze Test can be roughly catego-
rized into two lines: feature-based methods and neural mod-
els. Traditional feature-based methods for story understand-
ing [18]–[21] adopted some shallow semantic features, such as
n-grams and POS tags and trained a linear regression model to
determine whether a candidate ending is plausible. Two recent
works [9], [22] enhanced feature-based story understanding
by modelling the coherence of a complete story from three
perspectives, namely event, sentiment, and topic. MKR [9]
exploited heterogeneous resources and computed the cost of
inferring word spans in an ending from the corresponding
matching spans in the context with some predefined rules.
HCM [22] designed linguistic features over multiple semantic
aspects to select correct endings. They used SemLM [23],
N-gram model and topic-words’ information to capture and
measure event-sequence, sentiment trajectories and topical
consistency, respectively. Although HCM overcame the short-
comings of simple feature-based classifiers via generative
language models, these methods did not explicitly address the
evidence bias issue.

Neural models for SCT represent a candidate ending and
the context with low-dimensional dense vectors [24], and story
ending selection is made by computing the vectors’ similar-
ity [8], [25] or by a binary classifier [24], [26]. To capture the
deep meaning of highly recapitulative sentences better, atten-
tion based RNNs were proposed to represent the context and a
candidate ending [8], [25]. HBiLSTM [8] built a hierarchical
bidirectional LSTM model using attention mechanism to mod-
ify context representations according to the input candidate
ending. Recent works [27], [28] pursued the same strategy
as HBiLSTM but enriched synthesis word embeddings and
applied more complicated attention mechanism. Recent state-
of-the-art methods, including SeqMANN [28], FTLM (also
known as OpenAI GPT) [29], and Commonsense-Model [30],
showed that training on very large data can make remarkable
improvements for Story Cloze Test. SeqMANN utilized exter-
nal information to improve its basic multi-attention network.
FTLM pre-trained a language model on a corpus of 74M sen-
tences, then fine-tuned an additional discriminator on the story
corpus. Commonsense-Model supplemented FTLM with com-
monsense knowledge and sentiment polarity to achieve better
results. Although additional resources (either large language
corpus or knowledge bases) have demonstrated substantial
improvements on story ending prediction, there is still room
to improve existing attention-based neural models with the
given corpus alone. Though attention mechanism is effective
to highlight supporting evidence in the context, it suffers from
the evidence bias issue because a wrong ending can also match
word spans in the story context.
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Aakanksha [31] proposed stress tests for natural language
inference (NLI or RTE) task to evaluate whether a model
is robust to distractions in the form of adversarial examples.
They found that lexical similarity is the major factor for the
success of existing state-of-the-art models in natural language
inference, which makes these models unreliable to the cases
that are beyond lexical overlap. Their findings also inspire us
to design a story comprehension model that can avoid biased
lexical matching.

There are a few works on story generation, varying from
phrase-based plot generation [32], [33], story ending gener-
ation [10], [34], [35], to entire story generation [36]. Rule-
based methods [37], [38] and neural models with Sequence-
to-Sequence framework [39], [40] are widely used. Though
ending selection is different from ending generation, the
findings in this paper may inspire other generation models to
make use of the hint information that are important to make
a reasonable and coherent story.

III. MODEL

A. Task Formulation and Model Overview

Task Formulation
Our task is formulated as follows: Given a four-sentence

story context {S1, S2, S3, S4}, and two candidate endings
S1
end and S2

end, the goal is to identify which ending is correct.
We approach the task as a feature vector prediction prob-

lem [24]. Each sentence Si, including the candidate endings
is represented by a vector si ∈ Rds , and the model aims to
predict a feature vector sp ∈ Rds that represents a possible
ending. The final decision is made by choosing a candidate
ending whose sentence vector is closer to the predicted feature
vector sp.

The benefit to predict an ending feature vector instead of
performing a two-class classification lies in that we can utilize
the feature vector in other succeeding tasks such as story
ending generation.
Model Overview

Our model, named as HintNet, incorporates the hints from
two competing candidates to achieve a better understanding
of the story. As illustrated in Fig. 2, HintNet applies a
two-stage procedure. At the first stage, the model makes a
preliminary prediction, which generates a feature vector spp
solely based on the story context without any information
from the candidate endings. The predicted vector spp can be
viewed as a feature representation that may imply a correct
ending merely from the story context. At the second stage,
a latent variable will be used to encode the hint to obtain
a refined prediction, srp, which improves the preliminary
prediction to make the predicted vector closer to the gold
ending. The hint information encodes the difference between
two candidate endings to avoid the evidence bias issue, with a
purpose of supporting the correct ending, meanwhile inhibiting
other misleading information in the wrong ending.

The two-stage procedure is inspired by the story compre-
hension process mostly happened in humans: firstly, making
a preliminary scan of the story context and anticipating a
possible ending, and secondly, obtaining some hints from

candidate endings to gain better story comprehension. In this
manner, it is easier for us to decide which ending is more
reasonable and coherent to the story context.

B. Preliminary Prediction

At the first stage, HintNet encodes each sentence in a story
context into a vector and then predicts a feature vector to imply
a possible story ending.
Sentence Encoder

HintNet adopts a bidirectional LSTM [41], named as Sen-
tence Encoder, to encode a sentence to a vector representation
s ∈ Rds . To emphasize informative keywords in a long
sentence, a self-attention mechanism is applied.

Specifically, for sentence Si, we concatenate the hidden
states of the forward and the backward LSTMs at each position
to obtain the corresponding representation as vij :

f i
j = LSTMf (f i

j−1, e(xij)) (1)

bij = LSTMb(bij+1, e(xij)) (2)

vij = [f i
j ; b

i
j ] (3)

where e(xij) denotes the word embedding of word xij , and
[a; b] stands for the concatenation of vectors a and b.

We then concatenate the last hidden states f i
|Si| and bi1 of

the two LSTMs to form an intermediate sentence vector ui

(same as the encoding of a query u in [5]). The sentence vector
si is thereby constructed on top of ui as follows:

ui = [f i
|Si|; b

i
1] (4)

aij = (vij)
TMui (5)

si =

|Si|∑
j

exp(aij)∑
k exp(a

i
k)
vij (6)

Preliminary Ending Predictor
This ending predictor obtains a vector sstory ∈ Rds to

represent the story context and predicts a feature vector spp
which implies a possible story ending.

The four-sentence story context is encoded by another
BiLSTM (Story Encoder). To fully leverage the hint vector
subsequently, this module firstly transforms sstory into a latent
variable z , and then derives a feature vector spp as the
preliminary prediction, as follows:

sstory = BiLSTM(s1, s2, s3, s4) (7)
z = F(sstory) (8)

spp = G(z) (9)

where we apply an encoding network F : Rds → Rdz which
projects a sentence representation to a latent representation,
and a decoding network G : Rdz → Rds which projects the
two spaces in reverse. spp denotes the feature vector derived
from the preliminary prediction, which has the same dimension
as ending vectors s1end or s2end.

The encoder-decoder structure offers the flexibility for in-
corporating external information during the refined predic-
tion. As it will be shown in Eq. 16∼17, the structure can
include additional hint information in the decoding network.
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S1
end:Lina now knew….

S2
end:She felt a new..

Sentence
Encoder

s1end

s2end
Hint Encoding

Network
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Story
Encoder
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Encoder

S1:Lina went to see ……

S2:She watched as the……

S3:Then, they stretched……
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Encoder

S1:Lina went to ……

S2:She watched as……

S3:Then, they stretched……

S4:Finally,….
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Network
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Network
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Story
Encoder
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srp
z*

ŝstory
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ŝ4

sppsstory
z
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s3
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Preliminary Prediction

Hint ExtractorRefined Prediction

Ending  Predictor

Ending  Predictor

Fig. 2. HintNet applies a two-stage procedure: it anticipates a feature vector spp during the preliminary prediction and derives a refined vector srp by
utilizing the hint vector h and the preliminary prediction result spp. The hint vector h in the hint extractor encodes the difference between two candidate
endings, and it is used to update the representation of the context sentences ŝi, further to update the latent code ẑ. The hint encoding network takes as input
the predicted vector spp and the hint vector h to obtain a new code z∗. The final vector srp is computed from ẑ and z∗ by the decoding network. The
modules with an identical name share the same parameters.

Furthermore, we can flexibly compare different model settings
and hint representations within the structure, as shown in
Section IV-C.

C. Refined Prediction
At the second stage, HintNet takes into account the hint

information from two candidate endings to alleviate the evi-
dence bias issue. In this manner, we expect to obtain a refined
feature vector that may be closer to the correct ending than
that in the preliminary prediction.
Hint Extractor

A useful story hint is expected to embrace the relevant clues
that support a correct ending, yet exclude those which support
a wrong ending, and ignore the shared part between the two
endings as well. Thus, we simply define the hint vector as the
subtraction of the wrong ending from the correct ending2.

We investigate two representation schemes to obtain the
hint vector: sentence-level and neural bag-of-words (NBOW)
representations [42], [43].

For sentence-level representation, the hint vector is repre-
sented as follows:

h = scend − swend (10)

where scend/swend denotes the sentence vector of the cor-
rect/wrong ending respectively, both produced by the sentence
encoder.

For NBOW representation, the hint vector is defined as the
difference at the word level, as below:

hW =
1

|Xc
e |

∑
x∈Xc

e

e(x)− 1

|Xw
e |

∑
x∈Xw

e

e(x) (11)

2Nevertheless, more elaborated methods for hint representations are allowed
in our framework.

where Xc
e = {x|x ∈ Sc

end} is the set of words occurring in the
correct ending Sc

end, and Xw
e is similarly defined. e(x) stands

for the embedding of word x.
In addition to the above definitions, the hint representation

can also be designed to incorporate other prior knowledge
with the help of external resources. For example, in order
to highlight words that indicate the sentiment or the event
in a story [9], [22], we can represent the hint information as
follows:

hS =
1

|Xc
S |

∑
x∈Xc

S

e(x)− 1

|Xw
S |

∑
x∈Xw

S

e(x) (12)

hE =
1

|Xc
E |

∑
x∈Xc

E

e(x)− 1

|Xw
E |

∑
x∈Xw

E

e(x) (13)

where Xc
S = {x|x ∈ Sc

end and x ∈ S} is the set of
words existing in the correct ending and a set of sentiment
words S. E denotes the set of event-related words. Comparison
between different hint representations will be presented in
Section IV-D.

It is worthwhile to mention that the labels of the two endings
are available during training, however, they are unavailable
during test, and we thus need some inference method, which
will be introduced in Section III-E.
Refined Ending Predictor

HintNet incorporates the hint vector into both the Sentence
Encoder and the Ending Predictor to obtain a better prediction.

First of all, the sentence vector is updated by attention
considering the hint vector h:

âij = (vij)
TMh (14)

ŝi =

|Si|∑
j

exp(âij)∑
k exp(â

i
k)
vij (15)
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The updated sentence vectors ŝi are then used to update the
story context’s representation ŝstory (with Eq. 7), and further
to update the code ẑ (with Eq. 8). Thus, the representations
of sentences, story, and latent code are all updated with the
hint vector h during the refined prediction.

Then, a hint encoding network φ (an MLP) integrates the
hint vector h and the preliminary predicted ending vector spp
to generate a latent code z∗ ∈ Rdz , and this code is used to
obtain srp by the same decoding network G (in Eq. 9):

z∗ = φ(h, spp) (16)
srp = G(ẑ + z∗) (17)

D. Objective Function

We finally choose an appropriate ending whose sentence
vector is closer to srp, measured by cosine similarity:

k∗ = arg max cos(srp, s
k
end) k = 1, 2 (18)

where skend is the vector of a candidate ending.
The model is encouraged if the predicted vector is closer

to the correct ending than to the wrong ending. Hinge loss is
applied here. γp is a hyper-parameter to adjust the margin:

Lp = max(0, γp + cos(srp, s
w
end)− cos(srp, s

c
end)) (19)

E. Inference Method

As just mentioned, obtaining the hint vector requires the
access to the labels of the candidate endings, which are
available during training. During test, even though we do not
have such labels for computing the hint vector, we still have
an effective method for story ending prediction.

For each story with two candidate endings, we can formulate
two hypotheses:
Hypo-I: suppose the first candidate is correct (thus hI =
s1end − s2end, according to Eq. 10);
Hypo-II: suppose the second candidate is correct (thus hII =
s2end − s1end).
Since the hint vectors are different in the above hypothe-
ses, we will obtain different resulting vectors sIrp/sIIrp for
the two hypotheses. It is reasonable that, if Hypo-I holds,
we can expect that cos(sIrp, s

1
end) > cos(sIrp, s

2
end); other-

wise, cos(sIrp, s
1
end) < cos(sIrp, s

2
end). A similar rule ap-

plies to Hypo-II. The final decision is made by accepting
the hypothesis which can obtain a larger value in the two
scores: cos(sIrp, s

1
end) − cos(sIrp, s

2
end) and cos(sIIrp, s

2
end) −

cos(sIIrp, s
1
end).

To assure that the inference method will accept the correct
hypothesis and reject the wrong hypothesis at the same time,
we design an additional hinge loss to train HintNet:

Lw = max(0, γw + cos(s̄rp, s
w
end)− cos(s̄rp, s

c
end))

L = λpLp + λwLw (20)

where s̄rp is obtained with a wrong hint h̄ = swend − scend.
Lp (Eq. 19) enforces HintNet to predict a vector closer to
the correct ending when the hint is computed in a correct
way. Therefore, HintNet outputs the result that is accordant
with the correct hypothesis. Meanwhile, when the hint vector

is computed as h̄ = swend − scend (a wrong hypothesis
assuming that Sw

end is correct), Lw drives HintNet to obtain
an ending vector s̄rp distant from swend. By doing this, the
inference method can reject the wrong hypothesis since we
enforce that cos(s̄rp, s

w
end) < cos(s̄rp, s

c
end) in Lw. γw is a

hyper-parameter to adjust the margin. λp and λw are hyper-
parameters to balance two loss functions.

IV. EXPERIMENTS

A. Experimental Settings and Baselines

The corpus comes from the development set and the test
set of the original Story Cloze Test dataset, similar to recent
works [8], [9], [22]. Each instance consists of a four-sentence
story with two candidate endings. We took 10% of the
development set for validation and the rest for training. The
standard test set is for evaluating models.

We used Adam [44] for optimization with a learning rate
of 0.001 and a mini-batch size of 64. We performed grid
search to tune hyper-parameters from λ ∈ {1, 2, 5} and
γ ∈ {0.1, 0.2, 0.5, 1}. They were finally set as: {λp =
2.0, λw = 1.0} and {γp = 0.2, γw = 0.2}. The dimension
of word vector is 300, and the dimension of hidden states in
both the sentence encoder and story encoder is 128. The latent
variable z has a dimension of 64. The function F , G, Φ were
implemented by feed-forward networks with a single hidden
layer of size 128, 128, 256, respectively. Dropout layers are
applied before all linear layers with a dropout rate of 0.5. We
adopted the GloVe word embeddings [45] and kept them fixed
during training. For those words which have no pre-trained
GloVe embeddings, we initialized them randomly and treated
them as trainable variables. All parameters are regularized by
the L2 norm. We repeated each experiment five times and
took the average of the results as the reported performance in
following sections.

We compared our model with recent neural models and
feature-based models3:
BinaryC [26] uses skip thought embeddings and encodes the
entire context using a GRU to train a binary classifier to
determine if an ending is correct or wrong.
DSSM [46] measures the cosine similarity between the vector
representation of the context and that of an ending.
CGAN [25] encodes each ending and the story by GRUs and
computes an entail score. This work also employs the gener-
ative adversarial networks (GANs) to generate fake candidate
endings to augment the training data.
FES-LM [10] establishes a neural language model built upon
frames, entities and sentiments, and then utilizes the condi-
tional probability of the ending sentence given the context as
features to determine the correct ending.
HBiLSTM [8] uses an LSTM to encode the word sequence
into a sentence vector and another LSTM to encode the
sentence sequence into a context vector. The vector of input
candidate ending is used to compute the attention over words
to obtain modified context sentence vectors. The final score

3For fair comparison, we did not include recent state-of-the-art results
achieved by SeqMANN (84.7%), FTLM (86.5%), and Chen (87.6%) which
utilized other pre-trained models.
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TABLE I
ACCURACY OF HINTNET COMPARED WITH BASELINES. HINTNET IS

SIGNIFICANTLY BETTER THAN BASELINES WITH P-VALUE<0.01(†) OR
P-VALUE<0.05(*).

Model Accuracy
BinaryC 0.672†
DSSM 0.585†
CGAN 0.609†
FES-LM 0.623†
HBiLSTM 0.747†
UW 0.752†
Multi Knowledge Reasoning (MKR) 0.670†
Hidden Coherence Model (HCM) 0.776*

HintNet 0.792

is output by an MLP whose input is the concatenation of the
candidate’s vector and the context vector.
UW [21] trains a logistic regression model which uses lan-
guage model features and stylistic features including length,
word n-grams, and character n-grams.
Multi Knowledge Reasoning (MKR) [9] selects inference
rules for a certain context using attention mechanism, and
measures the reasoning distance from the context to an ending
by summarizing the costs of all possible inference rules.
Hidden Coherence Model (HCM) [22] trains a logistic
regression model which uses features considering the event-
sequence, the sentiment-trajectory, and the topic-consistency
of the story.

B. Overall Performance

The experimental results in Table I show that our model
outperforms all the baselines. Compared with the neural mod-
els (BinaryC, DSSM, CGAN, FES-LM, HBiLSTM), HintNet
achieves a higher accuracy. Compared to the feature-based
models (UW, MKR, HCM), HintNet has not only better perfor-
mance but also advantages in terms of no feature engineering
and less dependence on external resources. An additional
significance test in terms of accuracy (p-test, [47]) shows that
our system is significantly better than HCM (p-value=0.044)
and other baselines (p-value<0.01). More details for the
significance tests are presented in the appendix.

Table II presents some cases where HBiLSTM selects
a wrong ending but HintNet predicts correctly. For each
instance, we investigated the word attentions regarding the
wrong ending (the top two words ranked by attention weights
in each sentence are colored in red), which visualizes the
biased evidence. As it can be seen, a wrong ending can
also gather sufficient evidence with the matching-based model.
Moreover, words in the biased evidence play important roles in
narrating the story, which may mislead matching-based models
severely. For example, in the first story, the wrong ending and
the context share the same protagonists (‘my friends’ and ‘I’),
the same action (‘invite’) and the same sentiment (‘fun’).

Table III show the attention results of HintNet for same
cases. Red-colored words in the story context have largest
attentions regarding the intermediate sentence vector in the
preliminary prediction stage (Eq. 4 − Eq. 6) or the hint

vector in the refined prediction stage (Eq. 14 − Eq. 15).
When first read the context without considering any candidate
endings, the self-attention avoid the evidence bias, say, not
emphasize the wrong evidence ‘fun’ in the above example.
During refined prediction, key information to select the correct
ending is emphasized by the hint vector, like ‘last Saturday’,
‘terribly’ and ‘broke’ to infer ‘stay home next weekend’.
Moreover, distracting words like ‘love’ and ‘fun’ are assigned
less attention in refined prediction. These intermediate results
coincide with the motivation behind the hint vector (Eq. 10).

The examples show that analyzing each candidate ending
separately suffers from the issue of evidence bias, particularly
when the wrong ending is also highly plausible. In this
circumstance, HintNet is more likely to make an accurate
prediction. During anticipation, HintNet only reads the context
which alleviates evidence bias. During refinement, the hint
carries pairwise information which supports the correct ending
and rejects the wrong one meanwhile. It is therefore easier to
exclude biased evidence.

C. Impact of the Hint Information

We conducted experiments with different model structures
and settings in HintNet to evaluate the influence of the hint
information.

We experimented with a simple model, a one-layer feed-
forward network, to test whether the hint information will help
story ending prediction in even very simple structures. This
simple model has three settings:
Con-Single is fed with the concatenation of the story context
and a Single ending, [sstory; s1end] or [sstory; s2end], separately.
Con-Two inputs the concatenation of a story context and the
two endings, [sstory; s1end; s2end].
Con-Hint inputs the concatenation of the story context and
the hint information, [sstory;h].

The sentence vectors and hint vectors are calculated the
same as HintNet. The feed-forward network outputs a feature
vector and ending selection is made by comparing cosine
similarity between a candidate ending and the predicted feature
vector, the same as HintNet.

The results in the first block of Table IV reveal the following
observations:
• Con-Two is better than Con-Single, indicating that con-

sidering the two candidates simultaneously improves end-
ing prediction.

• Con-Hint outperforms other two models, verifying that
the hint information is useful in ending prediction, even
with simple model structures.

• These baselines are worse than HintNet, which implies
that it is vital to devise a proper structure to utilize the
hint information, and demonstrates the effectiveness of
our proposed two-stage procedure.

We experimented with different settings of HintNet to
further investigate the effect of the hint information and the
necessity of the proposed two-stage procedure, i.e., firstly
preliminary prediction and secondly refined prediction:
HintNet (w/o Re-Prediction): Predict an ending by spp, i.e.,
without refined prediction module.
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TABLE II
STORY EXAMPLES ON WHICH HBILSTM FAILS TO SELECT THE CORRECT ENDING BUT HINTNET SUCCEEDS. RED-COLORED WORDS IN CONTEXT HAVE

LARGEST ATTENTION WEIGHTS REGARDING THE WRONG ENDING IN HBILSTM, WHICH REVEALS THE ISSUE OF EVIDENCE BIAS.

Story Wrong Ending Correct Ending
My friends all love to go to the club to dance. They think it’s a lot
of fun and always invite. I finally decided to tag along last Saturday.
I danced terribly and broke a friends’s toe.

My friends decided to keep
inviting me out as I am so
much fun.

The next weekend, I was asked
to please stay home.

Kay loved ice cream. She visited Cold Stone and discovered they had
cinnamon ice cream. She ate cinnamon ice cream every week for 3
months. One day she returned and was told the ice cream was no
longer sold.

Kay was relieved because she
had moved on to peppermint.

Kay was crushed!

Dave walked into the grocery store. He was going there to buy his
favorite energy drink. He only had enough money to buy one can. He
reached the aisle and what he saw made him smile.

Dave bought an entire case. They were on sale.

TABLE III
STORY EXAMPLES WHERE RED-COLORED WORDS IN THE STORY CONTEXT HAVE LARGEST ATTENTION WEIGHTS REGARDING THE INTERMEDIATE

SENTENCE VECTOR (LEFT) OR THE HINT VECTOR (RIGHT).

Attention-weighted context in preliminary prediction Attention-weighted context in refined prediction
My friends all love to go to the club to dance. They think it’s a lot
of fun and always invite. I finally decided to tag along last Saturday.
I danced terribly and broke a friends’s toe.

My friends all love to go to the club to dance. They think it’s a lot
of fun and always invite. I finally decided to tag along last Saturday.
I danced terribly and broke a friends’s toe.

Kay loved ice cream. She visited Cold Stone and discovered they
had cinnamon ice cream. She ate cinnamon ice cream every week for
3 months. One day she returned and was told the ice cream was no
longer sold.

Kay loved ice cream. She visited Cold Stone and discovered they
had cinnamon ice cream. She ate cinnamon ice cream every week
for 3 months. One day she returned and was told the ice cream was
no longer sold.

Dave walked into the grocery store. He was going there to buy his
favorite energy drink. He only had enough money to buy one can.
He reached the aisle and what he saw made him smile.

Dave walked into the grocery store. He was going there to buy his
favorite energy drink. He only had enough money to buy one can. He
reached the aisle and what he saw made him smile.

TABLE IV
ACCURACY OF SIMPLE MLP-MODELS (CON-*) AND HINTNET WITH

DIFFERENT SETTINGS.

Model Accuracy
Con-Single 0.664
Con-Two 0.687
Con-Hint 0.711

HintNet(w/o Re-Prediction) 0.650
HintNet(w/o Hint) 0.651
HintNet(w/o Pre-Prediction) 0.770
HintNet(Multiple Refinement) 0.766
HintNet 0.792

HintNet (w/o Hint): No hint is used in the structure where
z∗ = φ(0, spp), compared to Eq. 16, and si is not updated to
ŝi .
HintNet (w/o Pre-Prediction): Predict an ending without
considering the preliminary prediction result by setting z∗ =
φ(h,0), compared to Eq. 16.
HintNet (Multiple Refinement): The refined prediction is
executed twice, i.e., z∗1 = φ(h, spp) and z∗2 = φ(h, srp).

The results in the second block of Table IV reveal the
following observations:

• The low accuracy of HintNet (w/o Re-Prediction) (0.650
vs. 0.792) and HintNet (w/o Hint) (0.651 vs. 0.792) reveal
that it is difficult to perform ending prediction only with
the story context.

• The comparison to HintNet (w/o Pre-Prediction) (0.770

TABLE V
ACCURACY OF HINTNET WITH DIFFERENT HINT REPRESENTATIONS.

Hint Repr. Hint Source Accuracy

h Full sentence 0.792

hW All words 0.728

hS Only sentiment words 0.692

hE Only event-related words 0.705

hS+E Sentiment and event-related words 0.718

vs. 0.792) shows that an preliminary prediction is bene-
ficial as it generates an anticipated vector for a possible
ending. It is useful when combined with the hint infor-
mation.

• The accuracy of multiple refinement drops compared with
single refinement because the model is trained to overly
depend on the hint information. Thus, abuse of the hint
information damages the performance of story ending
prediction.

D. Impact of Different Hint Representations

We evaluated the impact of different representations of
the hint on the performance, as described in Section III-C,
namely sentence-level representation (h), and neural bag-of-
words (NBOW) representations (hW , hS , and hE ). Moreover,
we investigated another NBOW representation hS+E , consid-
ering both the sentiment and event-related words in the hint
representation.
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TABLE VI
PERFORMANCE CHANGES WHEN DIFFERENT TYPES OF WORDS ARE REMOVED FROM THE ENDINGS WHEN COMPUTING HINT VECTORS.

Removed Tag Accuracy Correct Ending Wrong Ending

VB* ↓ 8.4%
Sam liked(VBD) it. Sam hated(VBD) it.
Franny learned to examine(VB) her prejudices. Franny ended(VBD) up getting(VBG) deported(VBN).

JJ ↓ 6.2%
Kelly was so happy(JJ) to finally beat it. Kelly was mad(JJ) about that.
Josh got sick(JJ). Josh thought the pie was deicious(JJ).

NN/NNS ↓ 7.7%
She loved her new phone(NN). Amy spent all of her money(NN) on clothes(NNS).
My friends(NNS) stopped playing to help me off the field(NN) I got back up to finish the game(NN)

NNP/PRP ↓ 3.1%
He(PRP) decided to run away from home. Tommy(NNP) then bought a new car.
His(PRP) dad’s teasing makes Henry(NNP) feel bad. Henry(NNP) wished he(PRP) looked like the handsome mailman.

To obtain sentiment-specific hint representation, we used
the sentiment vocabulary4 from [48] which includes 2,006
positive and 4,783 negative words. To obtain event-specific
hint representation, we used the NLTK toolkit for part-of-
speech tagging and collected all verbs and nouns in the Story
Cloze dataset to construct an event vocabulary.

The results in Table V demonstrate that:
• NBOW hint representations are worse than the sentence-

level representation since the former are too shallow
to capture the deep meaning of a sentence in story
comprehension. Statistics in Section IV-F report that most
stories need deep semantic understanding besides words
matching, also encouraging the sentence-level represen-
tation.

• Jointly considering sentiment or event-related words in
NBOW representation can improve story comprehension
compared with separate use of such resources,which is in
line with [9], [22].

E. Connections between Hint and Words

We studied the connections between the hint vector and the
surface words in the endings to reveal what is captured by the
hint vector. We compared the performance when a particular
type of words are removed from the endings. The sentence-
level hint representation is applied to the modified ending, and
the final decision is made by comparing srp to the vectors of
untouched candidate endings.

The word type is decided by the part-of-speech tag of a
word, using the NLTK5 toolkit. We compared four word types:
verbs (VB*), adjectives (JJ), nouns (NN/NNS), and proper
nouns plus personal pronouns (NNP/PRP).

Table VI presents the results with some exemplar endings.
We had the following observations:
• Verbs (VB*) play the most important roles in hint repre-

sentation where the performance drops mostly without
verbs, possibly because verbs usually express the key
information about the action, event, or major logic of
a reasonable story.

• Adjectives (JJ) are important for obtaining the hint infor-
mation since such words usually express strong sentiment
and emotion, which is crucial to decide a coherent ending.
It is in line with [9], [22].

4http://www.cs.uic.edu/∼liub/FBS/opinion-lexicon-English.rar
5http://www.nltk.org

• Noun phrases (NN/NNS) are important for hint represen-
tation as such words are usually the object of an action,
representing the candidates’ differences in the recipients
of an action, or the effect of an event.

• Proper nouns and personal pronouns (NNP/PRP) tend
to be less important for hint representation possibly due
to the fact that these words are usually the subject of
a sentence, representing the shared information between
the two candidates. For instance, the protagonist typically
appears in both candidate endings.

We sampled 150 stories from the test set randomly and
annotated them manually to investigate the type distribution
of key words. For each instance, annotators are asked to select
several words that distinguished a correct ending from a wrong
candidate. Fig. 3 shows the distribution of part-of-speech tags
for these keywords6.

Fig. 3. The distribution of part-of-speech tags of manually annotated
keywords in the 150 sampled stories. No proper noun or personal pronoun is
selected as keyword by annotators.

Results show that the distribution statistics are consistent
with the results in Table VI. Verbs are the most crucial
keywords for selecting a correct ending. Adjectives and noun
phrases are also important. Note that no proper nouns nor
personal pronouns are selected as keywords by human an-
notators, indicating that such words are not important for
ending selection (smallest performance drop when removing
such words, see Table VI), since both candidates follow up
the story context by sharing characters [2].

6We do not count the keywords whose POS tags are not one of the four
types we compared. The proportion of excluded keywords is less than 5%.
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TABLE VII
REQUIREMENTS OF SUCCESSFUL ENDING PREDICTION AND CORRESPONDING STORY EXAMPLES.

Requirement of Successful
Ending Prediction

Context Candidate Endings (Correct in bold)

Surface Word Matching
Aaron’s girlfriend asked him to come over for dinner. She said she
was making his favorite, chicken alfredo. Aaron was very excited
she wanted to cook, but he hated alfredo. She must have mixed up
his words when he told her his least favorite.

Aaron suggested he help her cook
another meal instead. (‘cook’ is
enough)

(31%) Aaron broke up with her.

Deep Semantic Coherence Tom rolled his wagon. The wheels then fell off! Tom started crying!
Tom’s dad fixed the wheels.

Tom’s dad was always there for Tom.
(fixed→helpful= be there for)

(52%) Tom’s dad was not helpful ever.

Implicit Human Knowledge Ben had a doctor’s appointment. He was very scared. He never went
to the doctor. He slowly stepped into the office.

The doctor greeted him calmly and
he felt better.

(17%) Ben was having so much fun there.
(seeing a doctor is not fun!)

F. Case Analysis

It is observed that the current capacity of story com-
prehension is still far from the human-level performance.
Fig. 4 shows an example for which HintNet failed to select
the correct candidate. In the story context, there are many
positive words such as ‘date’ and ‘like’, but the correct ending
describes an upset event. In order to select the correct ending
in this example, the machine should not only track changes of
events and their participants, but also possess the knowledge
that a man can have only one lover. Only through the surface
words, the model cannot do well on this example.

Fig. 4. A story example where HintNet fails to select the correct ending.

We note that the difficulty level for story ending selection
varies case by case. Some cases can be done by simple
surface word matching, while some cases require implicit
human knowledge, which is much more difficult. To this
end, we sampled 150 examples from the test set randomly .
Here, we broadly divide the requirements of successful ending
prediction into the following categories with examples shown
in Table VII:

1) Surface Word Matching (31%) : Words in the correct
ending are more coherent with the context, which makes
it easy to identify the correct ending at the lexical level.

2) Deep Semantic Coherence (52%): It requires a com-
prehensive understanding of sentences and a deep under-
standing of the relationship between multiple sentences
to select the correct ending.

3) Implicit Human Knowledge (17%): The correct end-
ings in these examples are hard to identify without some
real-world knowledge. Even for some instances, both
endings are logically reasonable but the correct one is
more better in terms of aesthetics.

Fig. 5. Accuracy of three neural models on stories with different reasoning
requirements.

Fig. 5 displays the accuracy of HintNet with h (sentence-
level hint representation, HintNet-sentence), HintNet with hW
(word-level hint representation, HintNet-word) and HBiLSTM
model on these samples:

• All the models perform closely to each other and obtain
high accuracy (0.9) on the samples which require only
surface word matching. That means, the easiest cases can
be handled well by all the models.

• The performance difference is remarkable on the samples
that need to handle semantic coherence. The accuracy
of the three models varies from 0.6 to 0.8. HintNet-
sentence is much better than HintNet-word since the for-
mer can capture sentence meanings better. The accuracy
of HBiLSTM is between HintNet-sentence and HintNet-
word. Both HBiLSTM and HintNet-sentence encode full
sentences using a bidirectional LSTM, but HBiLSTM
is negatively affected by the biased attention from an
individual ending.

• None of the three models can predict correct endings well
when implicit human knowledge is required. All the ac-
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curacy scores are lower than 0.6, close to a random guess.
This demonstrates the challenges for the hardest case of
story comprehension, and also the future direction.

V. CONCLUSION AND FUTURE WORK

This paper studies the evidence bias issue in story ending
selection, which commonly exists in the methods where each
candidate ending is matched to the story context separately.
We present a two-stage neural model, HintNet, to address the
evidence bias issue and improve story comprehension. HintNet
firstly anticipates a feature vector which implies a possible
ending, and then refines its preliminary prediction using the
hint information which encodes the difference between two
candidate endings. Results demonstrate HintNet outperforms
best-performing baselines, thereby justifying the benefit of
using hint information via simultaneous comparison.

As future work, there is still much room on using implicit
or explicit knowledge for story comprehension.

APPENDIX A
SIGNIFICANCE TEST

We present the details of how significance tests are con-
ducted. We apply p-test [47] to compare the performance
measures which are proportions.

Here we take the best baseline system (HCM) as the refer-
ence system and other comparisons follow a similar process.
The observed accuracy of our system is pao = 0.792, and that
of the reference system (HCM) is pbo = 0.776. The observed
proportion of the total trials (na = nb = 1871) is:

p =
na × pao + nb × pbo

na + nb
=
pao + pbo

2
= 0.784

The null hypothesis is H0 : pa = pb = p. The alternative
hypothesis is H1 : pa > pb, which means our model is better
than HCM.

Since the number of trials na = nb = 1871, the observed
value for one-sided test statistic is computed as:

zo =
pao − pbo√

2p(1− p)/(na + nb)

=
0.792− 0.776√

2 ∗ 0.784 ∗ 0.216/3742

=
0.016

0.0095
= 1.68

Thus, the p − value can be computed using the standard
normal distribution:

P (Z ≥ zo) = 1− Φ(1.68)

= 1− 0.9554

= 0.0446 (21)

Since the p−value is smaller than α = 0.05, we can reject
the null hypothesis and accept that our model is significantly
better than HCM at the significance level of α = 0.05.
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