常识知识感知的语言生成初探

Language Generation with Commonsense Knowledge

黄民烈

清华大学人工智能研究院
清华大学计算机系
Knowledge Everywhere

- Knowledge type
 - World facts
 - Commonsense knowledge
- Encoding **symbolic knowledge** becomes a hot topic
- Application
 - Language inference, semantic reasoning
 - MRC, QA & dialogue
 - Language generation (story, dialogue, etc.)
Commonsense Knowledge

- **Commonsense knowledge** consists of facts about the everyday world, that all humans are expected to know. (Wikipedia)
 - Lemons are sour
 - Tree has leaves
 - Dog has four legs

- Commonsense Reasoning ~ **Winograd Schema Challenge**:
 - The trophy would not fit in the brown suitcase because it was too **big**. What was too **big**?
 - The trophy would not fit in the brown suitcase because it was too **small**. What was too **small**?
Commonsense Extraction

• What is commonsense knowledge?
• What is the boundary?
• Commonsense extraction
 • From embeddings [1]
 • Commonsense knowledge base completion [2]
 • From raw data (text, image) [3]

① Yang et al. 2018. Extracting Commonsense Properties from Embeddings with Limited Human Guidance
② Li et al. 2018. Commonsense Knowledge Base Completion
③ Xu et al. 2018. Automatic Extraction of Commonsense LocatedNear Knowledge
CS Knowledge in Reading Comprehension

Mihaylov and Frank. 2018. Knowledgeable Reader: Enhancing Cloze-Style Reading Comprehension with External Commonsense Knowledge
CS Know. to Intent, Reaction, Emotion, etc

Event, Intents, and Reactions

- **PersonX cooks thanksgiving dinner**
 - X's intent: to impress their family
 - X's reaction: tired, a sense of belonging, impressed
 - Y's reaction:

- **PersonX drags PersonX's feet**
 - X's intent: to avoid doing things
 - X's reaction: lazy, bored
 - Y's reaction: frustrated, impatient

- **PersonX reads PersonY's diary**
 - X's intent: to be nosy, know secrets
 - X's reaction: guilty, curious
 - Y's reaction: angry, violated, betrayed

Mental states: motivations and emotional reactions

- Instructor:
 - The band instructor told the band to start playing.
 - He often stopped the music when players were off-tone.
 - They grew tired and started playing worse after a while.
 - The instructor was furious and threw his chair.
 - He cancelled practice and expected us to perform tomorrow.

- Players:
 - need rest
 - afraid
 - [anger]
 - [disgust, fear]

Rashkin et al. 2018. Event2Mind: Commonsense Inference on Events, Intents, and Reactions

CS Know. in Language Generation

Dialogue Generation: knowledge

- **Input:** I have *asthma* since three years old.
- **Output:** It is good for you to avoid *triggers*.

Story Ending Generation: logic

- **Today is **Halloween**. Jack is so excited to go *trick or treating* tonight. He is going to *dress up* like a *monster*. The *costume* is real *scary*.
- **He hopes to get a lot of **candy**.

Zhou et al. 2018. Commonsense Knowledge Aware Conversation Generation with Graph Attention.

Commonsense Knowledge

- **lung disease**
- **respiratory disease**
- **air pollution**
- **avoiding triggers**
- **chest tightness**

IsA: lung disease \(\rightarrow\) respiratory disease

Prevented_by: air pollution \(\rightarrow\) avoiding triggers

Caused_by: respiratory disease \(\rightarrow\) chest tightness

Caused_by: air pollution \(\rightarrow\) chest tightness

From ConceptNet
Commonsense Knowledge

- **asthma**
 - **IsA** lung disease
 - **Prevented_by** avoiding triggers
 - **Caused_by** chest tightness, air pollution

- **lung disease**
 - **IsA** respiratory disease

- **chest tightness**
 - **Caused_by** air pollution

From ConceptNet
Input: I have an **asthma** since three years old.

Triples in knowledge graph:
- (lung disease, IsA, *asthma*)
- (*asthma*, Prevented_by, avoiding triggers)

Concepts:
- lung disease
- respiratory disease
- asthma
- air pollution
- avoiding triggers
- chest tightness

From ConceptNet
Input: I have an asthma since three years old.

Output: I am sorry to hear that. Maybe avoiding triggers can prevent asthma attacks.

From ConceptNet
Input: I have asthma since three years old.

Output: It is good for you to avoid triggers.

Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu, Xiaoyan Zhu. Commonsense Knowledge Aware Conversation Generation with Graph Attention. IJCAI-ECAI 2018, Stockholm, Sweden. Distinguished paper
Encoding with static graph attention: encoding semantics in graph, Feeding knowledge-enhanced info. into the encoder
Decoding with dynamic graph attention: first attend a graph, then to a triple within that graph, finally generate with the words in a graph.
Commonsense-aware Dialog Generation

- Dataset: filtered from 10M reddit single-round dialogs

<table>
<thead>
<tr>
<th>Conversational Pairs</th>
<th>Commonsense KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Entity</td>
</tr>
<tr>
<td>3,384,185</td>
<td>21,471</td>
</tr>
<tr>
<td>Validation</td>
<td>Relation</td>
</tr>
<tr>
<td>10,000</td>
<td>44</td>
</tr>
<tr>
<td>Test</td>
<td>Triple</td>
</tr>
<tr>
<td>20,000</td>
<td>120,850</td>
</tr>
</tbody>
</table>

Table 1: Statistics of the dataset and the knowledge base.
Commonsense-aware Dialog Generation

Automatic evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall</th>
<th>High Freq.</th>
<th>Medium Freq.</th>
<th>Low Freq.</th>
<th>OOV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppx.</td>
<td>ent.</td>
<td>ppx.</td>
<td>ent.</td>
<td>ppx.</td>
</tr>
<tr>
<td>Seq2Seq</td>
<td>47.02</td>
<td>0.717</td>
<td>42.41</td>
<td>0.713</td>
<td>47.25</td>
</tr>
<tr>
<td>MemNet</td>
<td>46.85</td>
<td>0.761</td>
<td>41.93</td>
<td>0.764</td>
<td>47.32</td>
</tr>
<tr>
<td>CopyNet</td>
<td>40.27</td>
<td>0.96</td>
<td>36.26</td>
<td>0.91</td>
<td>40.99</td>
</tr>
<tr>
<td>CCM</td>
<td>39.18</td>
<td>1.180</td>
<td>35.36</td>
<td>1.156</td>
<td>39.64</td>
</tr>
</tbody>
</table>

Manual evaluation

Sign-test, p-value<0.005

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall</th>
<th>High Freq.</th>
<th>Medium Freq.</th>
<th>Low Freq.</th>
<th>OOV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>app.</td>
<td>inf.</td>
<td>app.</td>
<td>inf.</td>
<td>app.</td>
</tr>
<tr>
<td>CCM vs. Seq2Seq</td>
<td>0.616</td>
<td>0.662</td>
<td>0.605</td>
<td>0.656</td>
<td>0.549</td>
</tr>
<tr>
<td>CCM vs. MemNet</td>
<td>0.602</td>
<td>0.647</td>
<td>0.593</td>
<td>0.656</td>
<td>0.566</td>
</tr>
<tr>
<td>CCM vs. CopyNet</td>
<td>0.600</td>
<td>0.640</td>
<td>0.606</td>
<td>0.669</td>
<td>0.586</td>
</tr>
<tr>
<td>CCM vs. Seq2Seq</td>
<td>0.673</td>
<td>0.716</td>
<td>0.636</td>
<td>0.650</td>
<td>0.626</td>
</tr>
<tr>
<td>CCM vs. MemNet</td>
<td>0.626</td>
<td>0.654</td>
<td>0.622</td>
<td>0.635</td>
<td>0.626</td>
</tr>
<tr>
<td>CCM vs. CopyNet</td>
<td>0.596</td>
<td>0.640</td>
<td>0.610</td>
<td>0.633</td>
<td>0.596</td>
</tr>
</tbody>
</table>
Generated Example

Post: He proposed **March** 5th. We will be **married** October 10th. So 7 months

Knowledge: (**engaged**, RelatedTo, **married**), (**wedding**, RelatedTo, **married**), (**miss**, DistinctFrom, **married**), (**March**, RelatedTo, **months**)

- **Seq2Seq:** I'm not sure how to answer that. I'm not sure how to make a date.
- **MemNet:** I'm assuming he's married to a gay marriage?
- **CopyNet:** I'm sorry, I'm not sure what you mean by that.
- **CCM:** I'm pretty sure he's going to be **engaged** in the next 6 **months**.
Generated Example

Post: Totally thought it was going to be doug's grave.
Knowledge: (thought, RelatedTo, thinking), (doug, HasProperty, dead), (dead, RelatedTo, grave), (grave, RelatedTo, death)

• Seq2Seq: I was thinking the same thing.
• MemNet: I thought it was a dead end.
• CopyNet: I think it's a bit of a stretch.
• CCM: I thought it was doug's death. I was thinking the same thing.
Finding context clues: the temporal order of events and entities.

Today is **Halloween**.
Jack is so excited to go **trick or treating** tonight.
He is going to **dress up** like a **monster**.
The **costume** is real **scary**.

He hopes to get a lot of **candy**.

Jian Guan, Yansen Wang, Minlie Huang. Story Ending Generation with Incremental Encoding and Commonsense Knowledge. AAAI 2019
Story Ending Generation with CS Know.

Knowing the causality with **commonsense knowledge**

Today is **Halloween**. Jack is so excited to go **trick or treating** tonight. He is going to **dress up** like a **monster**. The **costume** is real **scary**.

He hopes to get a lot of **candy**.
Story Ending Generation with CS Know.

Incremental Encoding

Multi-Source Attention

Incremental Encoding

\[X_1 \quad \text{Today is Halloween.} \]
\[X_2 \quad \text{Jack is so excited to go trick or treating tonight.} \]
\[X_3 \quad \text{He is going to dress up like a monster.} \]
\[X_4 \quad \text{The costume is real scary.} \]
\[Y \quad \text{He hopes to get a lot of candy.} \]
Story Ending Generation with CS Know.

Attention to the knowledge base: static graph attention

Graph attention

Knowledge Graph Representation

"candy" "children"

"holiday" $\alpha_1 \alpha_2$

"costume" α_3

"halloween" $g("halloween")$
Story Ending Generation with CS Know.

- **Graph Attention**

 \[
g(x) = \sum_{i=1}^{N_x} \alpha_{R_i} [h_i; t_i],
 \]

 \[
 \alpha_{R_i} = \frac{e^{\beta_{R_i}}}{\sum_{j=1}^{N_x} e^{\beta_{R_j}}},
 \]

 \[
 \beta_{R_i} = (W_r r_i)^T \tanh(W_h h_i + W_t t_i),
 \]

- **Contextual Attention**

 \[
g(x) = \sum_{i=1}^{N_x} \alpha_{R_i} M_{R_i},
 \]

 \[
 M_{R_i} = BiGRU(h_i, r_i, t_i),
 \]

 \[
 \alpha_{R_i} = \frac{e^{\beta_{R_i}}}{\sum_{j=1}^{N_x} e^{\beta_{R_j}}},
 \]

 \[
 \beta_{R_i} = h_i^T W_c M_{R_i},
 \]
Story 2:
Context:
Martha is cooking a special meal for her family. She wants everything to be just right for when they eat. Martha perfects everything and puts her dinner into the oven. Martha goes to lay down for a quick nap.
Generated Ending:
When she gets back to the kitchen, she sees a burning light on the stove.

Story 1:
Context:
Taj has never drank an espresso drink. He ordered one while out with his friends. The shot of espresso tasted terrible to him. Taj found that he couldn't stop talking or moving.
Generated Ending:
He decided to never drink again.
An Example of “Logic Chains”

Building context clues incrementally

X_1: Martha is cooking a special meal for her family.

X_2: She wants everything to be just right for when they eat.

X_3: Martha perfects everything and puts her dinner into the oven.

X_4: Martha goes to lay down for a quick nap.

Y: When she gets back to the kitchen, she sees a burning light on the stove.
Controllable Language Generation

• Three **fundamental problems** in current neural language generation models

 • **Semantics** (real understanding)

 • **Consistency** (long text generation)

 • **Logic** (reasonable and making sense)

• New architecture: **symbolic knowledge + planning + neural computing**
感谢关注！

aihuang@tsinghua.edu.cn
Http://coai.cs.tsinghua.edu.cn/hml