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About Me (Minlie Huang)

� Associate Professor, CS Department, Tsinghua University

� Homepage: http://coai.cs.tsinghua.edu.cn/hml

� Research Interests
u Deep learning
u Deep reinforcement learning
u Generalized QA: QA, Read Comprehension, Story Comprehension
u Dialogue systems: task-oriented, open-domain
u Language generation
u Sentiment/Emotion understanding

http://coai.cs.tsinghua.edu.cn/hml
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Our Recent Works on RL

� Brief Introduction to reinforcement learning (RL)

� Learning Structured Representation with RL (AAAI 2018)
u Policy gradient

� Relation Classification from Noisy Data (AAAI 2018)
u ��PaperWeekly 2017�������10	NLP
�
u Policy gradient

� Weakly Supervised Topic Labeling in Customer Dialogues (IJCAI-ECAI 2018)
u Policy gradient

� Learning to Collaborate: Joint Ranking Optimization (WWW2018)
u Multi-agent reinforcement learning; deterministic policy; actor-critic
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Reinforcement Learning

Agent

Environment http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf

At each step t:
• The agent receives a state St from the

environment
• The agent executes action At based on

the received state
• The agent receives scalar reward Rt

from the environment
• The environment transfers into a new

state St+1
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Maze Example

States: Agent’s location
Actions: N, E, S, W
Rewards:
• 100 if reaching the goal
• -100 if reaching the dead end
• -1 per time-step

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
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Deep Reinforcement Learning

Deep learning to represent states, actions,
or policy functions

Robotics, control Self-driving

Language interaction System operating
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Reinforcement Learning

� Markov Decision Process 

From ICML Tutorial by Sergey Levine and Chelsea Finn 
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Reinforcement Learning

From ICML Tutorial by Sergey Levine and Chelsea Finn 
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Reinforcement Learning

From ICML Tutorial by Sergey Levine and Chelsea Finn 
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Policy Gradient
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Policy Gradient
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Reinforcement Learning

� Sequential decision: current decision affects future decision

� Trial-and-error: just try, do not worry making mistakes
uExplore (new possibilities)
uExploit (with the current best policy)

� Future reward: maximizing the future rewards instead of

just the intermediate rewards at each step
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Applying RL in NLP

� Challenges
u Sparse reward (few feedback when making decisions)
u Difficulty in reward function design
u High-dimensional action space
u High variance in training RL algorithms

� Strengthens of RL
uWeak supervision without explicit annotations
uTrial-and-error: probabilistic exploring
uAccumulative rewards: encoding expert/prior knowledge in

reward design
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Applying RL in NLP

� Immediate rewards: t could be word/sentence

t1 t2 t3 t4

Agent scan

a1 a2 a3 a4
R1 R2 R3 R4
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Applying RL in NLP

� Delayed rewards

t1 t2 t3 t4

Agent scan

a1 a2 a3 a4

Reward Estimator

Ø Comparing with gold-

standard: BLEU\ACC\F1

Ø By classifier: likelihood

Ø Prior/domain expertise:

sparsity or continuity
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Learning Structured 
Representation for Text 

Classification
via Reinforcement Learning

Tianyang Zhang, Minlie Huang, Li Zhao

AAAI 2018
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Background

The actors are fantastic . They are what 
makes it worth the trip to the theater .

Sentence Representation

Classifier

� Non-structure model
uCNN, RNN, LSTM
uBag-of-words models (BM�AE)

� Using parsing structures
uRecursive autoencoders
u Tree-structured LSTM

� Auto-learned structure
uBinary tree, overly deep



20

The Problem …

� How can we identify task-relevant structures without

explicit annotations on structure?

� Challenges
u NO explicit annotations on structure-weak supervision
u Trial-and-error, measured by delayed rewards
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Model Structure

Policy Network(PNet) Structured Representation Model
Classification
Network(CNet)

� Policy Network: 
u Samples an action at each state

u Two models: Information Distilled LSTM, Hierarchically Structured LSTM

� Structured Representation Model: transfer action sequence to representation

� Classification Network: provide reward signals
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Policy Network (PNet)

� State !"
u Encodes the current input and previous contexts
u Provided by different representation models

� Action #"
u {Retain, Delete} in Information Distilled LSTM
u {Inside, End} in Hierarchically Structured LSTM
u $ %& '&; Θ = +(- ∗ '& + 0)

� Reward 2"
u Calculated from the classification likelihood
u A factor considering the tendency of structure selection
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Policy Network (PNet)

� Maximize the expected reward:

� Update the policy network with policy gradient:



24

Classification Network (CNet)

� CNet is trained via cross entropy (loss function):
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Information Distilled LSTM (ID-LSTM)

� Distill the most important words and remove irrelevant 
words

� Sentence representation: the last hidden state of ID-LSTM
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Information Distilled LSTM (ID-LSTM)

� Action: {Retain, Delete}
� States:

� Rewards:

the proportion of the number of deleted 
words to the sentence length



27

Hierarchically Structured LSTM(HS-LSTM)

� Build a structured representation by discovering hierarchical 
structures in a sentence

� Two-level structure: 
u Word-level LSTM + phrase-level LSTM
u Sentence representation: the last hidden state of phrase-level 

LSTM
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Hierarchically Structured LSTM(HS-LSTM)

� Action: {Inside, End} 

� States:

� Rewards:

Word-level LSTM

Phrase-level LSTM

a unimodal function of the number of phrases (a good phrase 
structure should contain neither too many nor too few phrases)
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Experiment

� Dataset
uMR: movie reviews (Pang and Lee 2005)
u SST: Stanford Sentiment Treebank, a public sentiment analysis 

dataset with five classes (Socher et al. 2013)
u Subj: subjective or objective sentence for subjectivity

classification (Pang and Lee 2004)
u AG: AG’s news corpus, a large topic classification dataset 

constructed by (Zhang, Zhao, and LeCun 2015)
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Experiment

� Classification Results

� Examples by ID-LSTM/HS-LSTM
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Results of ID-LSTM
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Results of HS-LSTM
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Summary

� A reinforcement learning method which learns sentence 
representation by discovering task-relevant structure

� Two representation models: ID-LSTM and HS-LSTM

� State-of-the-art performance & interesting task-relevant 
structures

� No direct supervision on structureà trial-and-error!
u Policy gradient
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Reinforcement Learning for 
Relation Classification from 

Noisy Data

Jun Feng, Minlie Huang, Li Zhao,
Yang Yang, Xiaoyan Zhu

AAAI 2018
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Introduction to Relation Classification

� Relation Classification (or extraction)

� Distant Supervision (noisy labeling problem)

[Obama]e1 was born in the [United States]e2.

Relation: BornIn

[Barack Obama]e1 is the 44th President of the [United States]e2.

Relation: BornIn

Triple in knowledge base:<Barack_Obama, BornIn, United_States>
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The Problem …

� Previous studies adopt multi-instance learning to consider 
the instance noises

Bag-Level

Barack_Obama, United_States

Obama was born in the United States.

Barack Obama is the 44th President of the United States
BornIn

Relation
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Motivation

� Two limitations of previous works:
u Unable to handle the sentence-level prediction

u Unable to deal with all noisy sentences (all are wrong)

Barack_Obama, United_States

Obama was born in the United States.

Barack Obama is the 44th President of the United States
StudyIn

Relation

Barack_Obama, United_States

Obama was born in the United States.

Barack Obama is the 44th President of the United States
BornIn

EmployedBy

Sentence-Level

Relation

How can we remove noisy data to improve relation
extraction without explicit annotations?
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Model Structure

� The model consists of an instance selector and a relation 
classifier

� Challenges:
u Instance selector has no explicit knowledge about which 

sentences are labeled incorrectly
• Weak supervision -> delayed reward
• Trail-and-error search

u How to train the two modules jointly

Original
Data

Cleansed
Data

Instance
Selector

Relation
Classifier

Reinforcement
Learning
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Model Structure
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The Logic Why it Works

� Start from noisy data to pretrain relation classifier and instance

selector

� Remove noisy data

� Train better classifier to obtain

better reward estimator

� Train better policy with more

accurate reward estimator

� Remove noisy data more accurately
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Instance Selector

� Instance selection as a reinforcement learning problem
u State: F(si) the current sentence, the already selected sentences, 

and the entity pair
uAction: {0,1}, select the current sentence or not

uReward: the total likelihood of the sent. bag
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Instance Selector

� Optimization:
u Maximize the expected total rewards

u Update parameters with the REINFORCE algorithm
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Relation Classifier

� A CNN architecture to classify relations

� Optimization: cross-entropy as the objective function
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Training Procedure

� Overall Training Procedure
1. Pre-train the CNN model of the relation classifier
2. Pre-train the policy network of the instance selector with the

CNN model fixed
3. Jointly train the CNN model and the policy network
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Experiment

� Dataset
u NYT and developed by (Riedel, Yao, and McCallum 2010)

� Baselines
u CNN: is a sentence-level classification model. It does not 

consider the noisy labeling problem.
u CNN+Max: assumes that there is one sentence describing the

relation in a bag and chooses the most correct sentence in each 
bag.

u CNN+ATT: adopts a sentence-level attention over the sentences 
in a bag and thus can down weight noisy sentences in a bag.



46

Experiment

� Sentence-Level Relation Classification
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Experiment

� The performance of the instance selector
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Experiment

� The performance of the instance selector



49

Case Study
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Summary

� A new model to extract relations from noisy data.

� Merely with a weak supervision signal from the relation 
classifier.

� The idea for instance selection can be generalized to other 
tasks that employ noisy data or distant supervision.

� Weak supervision: no annotation on which sentence is
noisy!
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A Weakly Supervised Method for 
Topic Segmentation and Labeling 
in Goal-oriented Dialogues via 

Reinforcement Learning

Ryuichi Takanobu, Minlie Huang, 

Zhongzhou Zhao, Haiqing Chen, et al.

IJCAI 2018
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Motivation

� Customer service dialogues are commonly seen in large-scale

web services

� Topic segmentation and labeling is a coarse-grained intent

analysis, a key step to dialogue understanding

� Dialogue structure analysis is an important task in goal-

oriented dialogue systems
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The Problem …
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The Problem …

How can we do topic labeling on these large-scale
dialogues without much annotation efforts?
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Prior
Knowledge

Central Idea

Learning from weakly annotated data

Noisy
Labeling

Policy
Training

Label
Correction

Noisy
Data

Corrected
Data

Local/global
Reward

� Noisy labeled dataà learn policies with rewardà refine

dataà learn better policiesà refine more data



56

Model Structure

� State Representation Network

� Policy Network
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Model Structure

� Local topic continuity: the same topic will continue in a few

dialogue turns

� Global topic structure: high content similarity within segments

but low between segments
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Experiment
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Experiment

� Training converges well (loss, reward, accuracy, relative data

change)
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Visualization Examples

By Our RL ModelsBy Noisy Labeling
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Summary

� Start from noisy labeled data (avoiding expensive full

annotation)

� Instead of removing noisy data, correct the noisy labels

using reinforcement learning

� Weak supervision: what we need is just a set of keywords

and some prior knowledge!
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Reinforcement Learning in Search

� Usually multi-turn interactions
uCould be natural sequential decision problems
u For instance, search result diversification

� No direct supervision on which you should do at each step

� Only implicit feedbacks from user behavior data
uNot necessarily as direct supervision
uGood as reward signals for RL
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Learning to Collaborate: Multi-
Scenario Ranking via Multi-
Agent Reinforcement Learning

Jun Feng, Heng Li, Minlie Huang, Shichen
Liu, Wenwu Ou, Zhirong Wang and Xiaoyan Zhu

WWW 2018
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Background

� Multi-scenario Ranking: most large-scale online platforms 
or mobile Apps have multiple scenarios

Main-search In-shop Search
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Motivation

� Previous methods separately optimized each individual 
ranking strategy in each scenario
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Motivation

� Joint Optimization of Multi-scenario Ranking
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Model Overview

� Multi-Agent Recurrent Deterministic Policy Gradient 
(MA-RDPG)
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Model Structure

� Multi-Agent Recurrent Deterministic Policy Gradient (MA-
RDPG)
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Model Structure

� Communication Component: make the agents collaborate 
better with each other by sending messages
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Model Structure

� Private Actor. Each agent has a private actor which receives 
local observations and shared messages, and makes its own 
actions.

� Centralized Critic: an action-value function to approximate 
the future overall rewards obtained by all the agents
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Training Procedure

� The centralized critic is trained using the Bellman equation

� The private actor is updated by maximizing the expected total
rewards with respect to the actor’s parameters
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Training Procedure

Generate new episode

Update the replay buffer

Sample training batch from replay buffer

Update the parameters of:
• Centralized Critic
• Private actor
• Communication Component
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Application in Search

� Jointly optimize the ranking strategies in two search 
scenarios in Taobao
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How Training Happens

� Step 1: Start from a base ranking algorithm

� Step 2: Collect user feedback data with the current ranking system

� Step 3: Train our MA-RDPG algorithm to obtain new ranking

weights (i.e., the action of the agents by deterministic policy)

� Step 4: Apply the new weights to the online ranking systems

� Goto Step 2 until convergence
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Application in Search

� The observations, actions, rewards for the agents:
u Observations: the features of each ranking scenarios

• the attributes of the customer (age, gender, purchasing power, etc.)
• the properties of the customer’s clicked items (price, conversion rate,

sales volume, etc.)
• the query type and the scenario index (main or in-shop search)
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Application in Search

� The observations, actions, rewards

for the agents:
u Actions: the weight vector for the

ranking features
u Continuous actions, deterministic

policies
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Application in Search

� The observations, actions, rewards for the agents:
u Rewards: user feedback on the presented product list

• if a purchase behavior happens, reward = the price of the bought 
product

• if a click happens, reward = 1
• if there is no purchase nor click, reward = -1
• if a user leaves the page without buying any product, reward = −5.
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Experiment Results

� GMV gap evaluated on an online Taobao platform

Relative improvement against EW+EW

Recent results online: MA-RDPG gains 3% improvement against L2R+L2R
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Experiment Results

� Learning process of the loss function, critic value and GMV
gap
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Summary

� Multi-scenario ranking (or optimization) as a fully 
cooperative, partially observable, multi-agent sequential
decision problem

� Multi-agent, deterministic policy RL to enable multiple 
agents to work collaboratively to optimize the overall 
performance.

� Significant gain in improving ranking systems in real online
service (Taobao)

� Learning from user feedback, through interactions!
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Messages and Lessons

� Keys to the success of RL in NLP
u Formulate a task as a natural sequential decision problem where
current decisions affect future ones!

uRemember the nature of trial-and-error when you have no
access to full, strong supervision.

u Encode the expertise or prior knowledge of the task in rewards.
uApplicable in many weak supervision settings.
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Messages and Lessons

� Lessons we learned
uAwarm-start is important, using pre-training (due to too many
spurious solutions and too sparse rewards)

uVerymarginal improvements to full supervision settings
uVerymarginal improvements for large action space problems
(e.g., language generation)

u Patient enough to the training tricks and tunings



83

Thanks for Your Attention

� Minlie Huang, Tsinghua University

� aihuang@tsinghua.edu.cn

� http://coai.cs.tsinghua.edu.cn/hml

mailto:aihuang@tsinghua.edu.cn
http://coai.cs.tsinghua.edu.cn/hml

