
Reinforcement Learning in Natural Language Processing and Search

Minlie Huang (黄民烈)

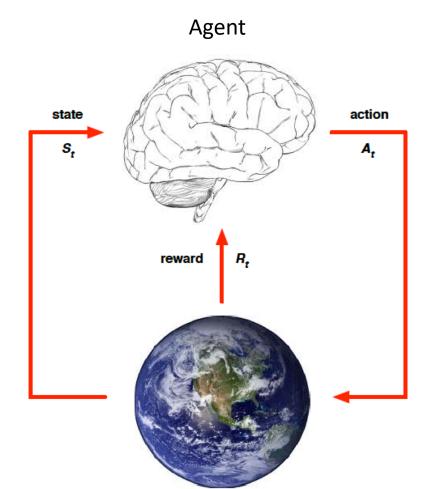
Dept. of Computer Science,
Tsinghua University

aihuang@tsinghua.edu.cn

http://coai.cs.tsinghua.edu.cn/hml

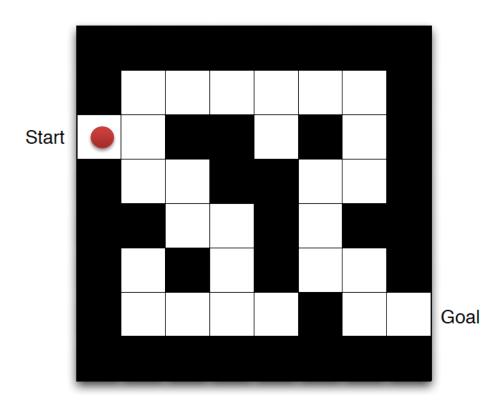
About Me (Minlie Huang)

- Associate Professor, CS Department, Tsinghua University
- Homepage: http://coai.cs.tsinghua.edu.cn/hml
- Research Interests
 - Deep learning
 - Deep reinforcement learning
 - ◆ Generalized QA: QA, Read Comprehension, Story Comprehension
 - Dialogue systems: task-oriented, open-domain
 - Language generation
 - Sentiment/Emotion understanding



Our Recent Works on RL

- Brief Introduction to reinforcement learning (RL)
- Learning Structured Representation with RL (AAAI 2018)
 - Policy gradient
- Relation Classification from Noisy Data (AAAI 2018)
 - ◆ 入选PaperWeekly 2017年度最值得读的10篇NLP论文
 - Policy gradient
- Weakly Supervised Topic Labeling in Customer Dialogues (IJCAI-ECAI 2018)
 - Policy gradient
- Learning to Collaborate: Joint Ranking Optimization (WWW 2018)
 - Multi-agent reinforcement learning; deterministic policy; actor-critic


At each step t:

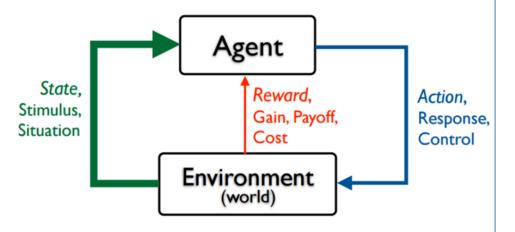
- The agent receives a **state** S_t from the environment
- The agent executes action A_t based on the received state
- The agent receives scalar reward R_t
 from the environment
- The environment transfers into a new state S_{t+1}

Maze Example

States: Agent's location

Actions: N, E, S, W

Rewards:


100 if reaching the goal

• -100 if reaching the dead end

• -1 per time-step

Deep Reinforcement Learning

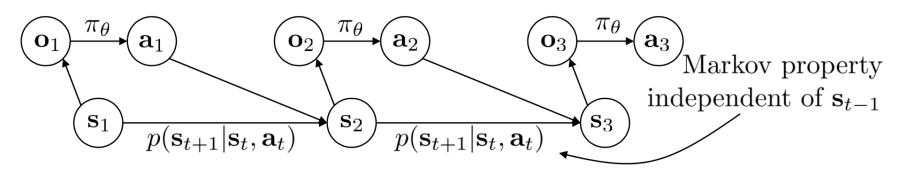
Deep learning to represent states, actions, or policy functions

Robotics, control

Language interaction

Self-driving

System operating


Markov Decision Process

$$\mathbf{s}_t$$
 – state

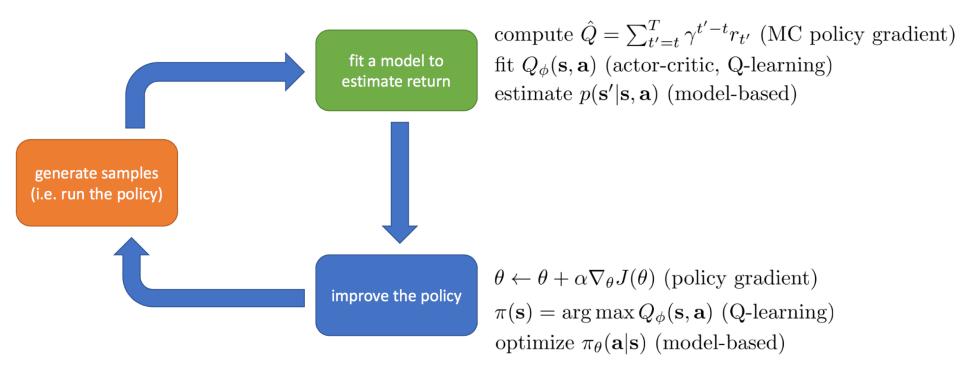
 \mathbf{o}_t – observation

 \mathbf{a}_t – action

$$\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$$
 - policy $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ - policy (fully observed)

$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\mathbf{m}_{\theta}(\tau)$$
Markov chain


 $p_{ heta}(\mathbf{s}_t, \mathbf{a}_t)$ state-action marginal

 $p_{\theta}(\mathbf{s}, \mathbf{a})$ stationary distribution

$$\theta^* = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})]$$

Policy Gradient

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta}(\tau)r(\tau)d\tau$$

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} \pi_{\theta}(\tau)} r(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau$$

$$\pi_{\theta}(\tau)\nabla_{\theta}\log \pi_{\theta}(\tau) = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta}\pi_{\theta}(\tau)$$

Policy Gradient

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} \pi_{\theta}(\tau)} r(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau$$

$$= E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

- Sequential decision: current decision affects future decision
- Trial-and-error: just try, do not worry making mistakes
 - **Explore** (new possibilities)
 - Exploit (with the current best policy)
- Future reward: maximizing the future rewards instead of just the intermediate rewards at each step

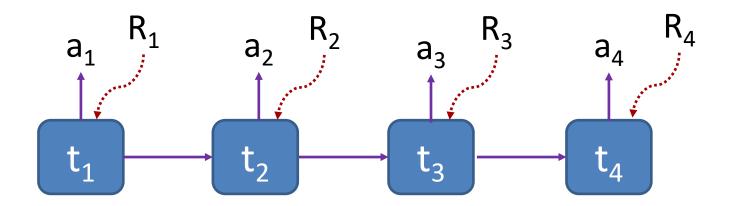
$$q_{\pi}(s, a) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots \mid S_{t} = s, A_{t} = a, A_{t+1:\infty} \sim \pi\right]$$

$$q_{\pi}(s, a) = \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_{t} = s, A_{t} = a, A_{t+1} \sim \pi\right]$$

Applying RL in NLP

Challenges

- ◆ Sparse reward (few feedback when making decisions)
- Difficulty in reward function design
- High-dimensional action space
- High variance in training RL algorithms

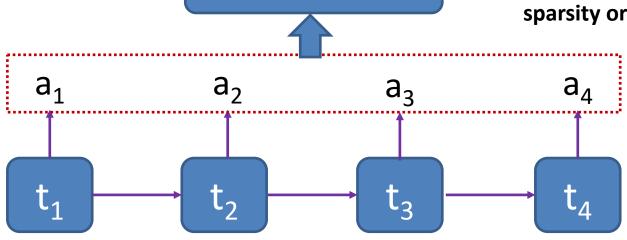

Strengthens of RL

- ♦ Weak supervision without explicit annotations
- ◆ **Trial-and-error**: probabilistic exploring
- ◆ Accumulative rewards: encoding expert/prior knowledge in reward design

Applying RL in NLP

• Immediate rewards: t could be word/sentence

Agent scan


Applying RL in NLP

Delayed rewards

Comparing with goldstandard: BLEU\ACC\F1

> By classifier: likelihood

Prior/domain expertise: sparsity or continuity

Reward Estimator

Agent scan

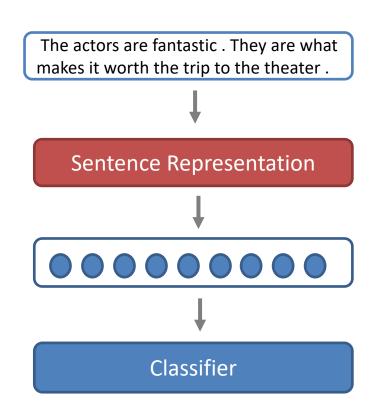
Learning Structured Representation for Text Classification via Reinforcement Learning

Tianyang Zhang, Minlie Huang, Li Zhao

AAAI 2018

Background

Non-structure model


- CNN, RNN, LSTM
- ◆ Bag-of-words models (BM、AE)

Using parsing structures

- Recursive autoencoders
- ◆ Tree-structured LSTM

Auto-learned structure

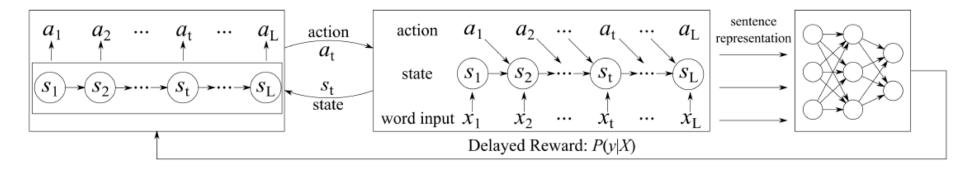
♦ Binary tree, overly deep

The Problem ...

• How can we identify task-relevant structures without explicit annotations on structure?

Origin text	Cho continues her exploration of the outer limits of raunch with considerable brio.			
ID-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.			
HS-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.			
Origin text	Much smarter and more attentive than it first sets out to be.			
ID-LSTM	Much smarter and more attentive than it first sets out to be.			
HS-LSTM	Much smarter and more attentive than it first sets out to be.			
Origin text	Offers an interesting look at the rapidly changing face of Beijing.			
ID-LSTM	Offers an interesting look at the rapidly changing face of Beijing.			
HS-LSTM	Offers an interesting look at the rapidly changing face of Beijing.			

- Challenges
 - ◆ NO explicit annotations on structure-weak supervision
 - ◆ Trial-and-error, measured by delayed rewards



Model Structure

Policy Network(PNet)

Structured Representation Model

Classification Network(CNet)

- Policy Network:
 - Samples an action at each state
 - ◆ Two models: Information Distilled LSTM, Hierarchically Structured LSTM
- Structured Representation Model: transfer action sequence to representation
- Classification Network: provide reward signals

Policy Network (PNet)

\bullet State s_t

- Encodes the current input and previous contexts
- Provided by different representation models

\bullet Action a_t

- **♦** {Retain, Delete} in Information Distilled LSTM
- **♦** {Inside, End} in Hierarchically Structured LSTM

\bullet Reward r_t

- Calculated from the classification likelihood
- ◆ A factor considering the tendency of structure selection

Policy Network (PNet)

• Maximize the expected reward:

$$J(\Theta) = \mathbb{E}_{(\mathbf{s_t}, a_t) \sim P_{\Theta}(\mathbf{s_t}, a_t)} r(\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L)$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} P_{\Theta}(\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L) R_L$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} p(\mathbf{s_1}) \prod_t \pi_{\Theta}(a_t | \mathbf{s_t}) p(\mathbf{s_{t+1}} | \mathbf{s_t}, a_t) R_L$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} \prod_t \pi_{\Theta}(a_t | \mathbf{s_t}) R_L.$$

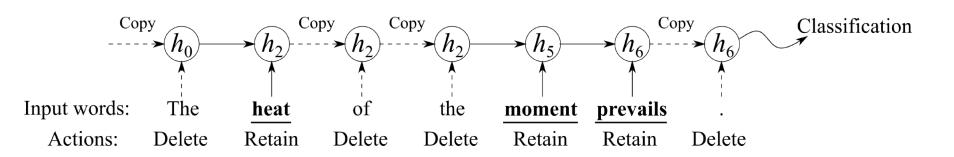
• Update the policy network with policy gradient:

$$\nabla_{\Theta} J(\Theta) = \sum_{t=1}^{L} R_L \nabla_{\Theta} \log \pi_{\Theta}(a_t | \mathbf{s_t})$$

Classification Network (CNet)

• CNet is trained via cross entropy (loss function):

$$P(y|X) = softmax(\mathbf{W_sh_L} + \mathbf{b_s}),$$


$$\mathcal{L} = \sum_{X \in \mathcal{D}} - \sum_{y=1}^{K} \hat{p}(y, X) \log P(y|X)$$

Information Distilled LSTM (ID-LSTM)

- Distill the most important words and remove irrelevant words
- Sentence representation: the last hidden state of ID-LSTM

$$P(y|X) = softmax(\mathbf{W_sh_L} + \mathbf{b_s})$$

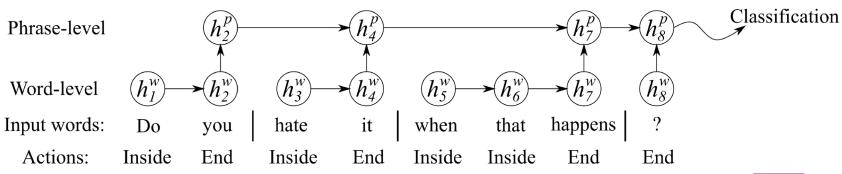
Information Distilled LSTM (ID-LSTM)

States:

$$\mathbf{s_t} = \mathbf{c_{t-1}} \oplus \mathbf{h_{t-1}} \oplus \mathbf{x_t},$$

$$\mathbf{c_t}, \mathbf{h_t} = \begin{cases} \mathbf{c_{t-1}}, \mathbf{h_{t-1}}, & a_t = Delete \\ \Phi(\mathbf{c_{t-1}}, \mathbf{h_{t-1}}, \mathbf{x_t}), & a_t = Retain \end{cases}$$

• Rewards:


$$R_L = \log P(c_g|X) + \gamma L'/L$$

the proportion of the number of deleted words to the sentence length

Hierarchically Structured LSTM(HS-LSTM)

- Build a structured representation by discovering hierarchical structures in a sentence
- Two-level structure:
 - ◆ Word-level LSTM + phrase-level LSTM
 - ◆ Sentence representation: the last hidden state of phrase-level LSTM

Hierarchically Structured LSTM(HS-LSTM)

• Action: {Inside, End}

$\overline{a_{t-1}}$	a_t	Structure Selection
Inside	Inside	A phrase continues at x_t .
Inside	End	A old phrase ends at x_t .
End	Inside	A new phrase begins at x_t .
End	End	x_t is a single-word phrase.

$$\bullet$$
 States: $\mathbf{s_t} = \mathbf{c_{t-1}^p} \oplus \mathbf{h_{t-1}^p} \oplus \mathbf{c_t^w} \oplus \mathbf{h_t^w}$

$$\text{Word-level LSTM} \quad \mathbf{c_t^w}, \mathbf{h_t^w} = \left\{ \begin{array}{ll} \Phi^w(\mathbf{0}, \mathbf{0}, \mathbf{x_t}), & a_{t-1} = End \\ \Phi^w(\mathbf{c_{t-1}^w}, \mathbf{h_{t-1}^w}, \mathbf{x_t}), & a_{t-1} = Inside \end{array} \right.$$

$$\text{Phrase-level LSTM} \ \ \mathbf{c_t^p}, \mathbf{h_t^p} = \left\{ \begin{array}{ll} \Phi^p(\mathbf{c_{t-1}^p}, \mathbf{h_{t-1}^p}, \mathbf{h_t^w}), & a_t = End \\ \mathbf{c_{t-1}^p}, \mathbf{h_{t-1}^p}, & a_t = Inside \end{array} \right.$$

• Rewards:
$$R_L = \log P(c_g|X) - \gamma(L'/L + 0.1L/L')$$

a unimodal function of the number of phrases (a good phrase structure should contain neither too many nor too few phrases)

Experiment

Dataset

- ◆ MR: movie reviews (Pang and Lee 2005)
- ◆ SST: Stanford Sentiment Treebank, a public sentiment analysis dataset with five classes (Socher et al. 2013)
- ◆ **Subj**: subjective or objective sentence for subjectivity classification (Pang and Lee 2004)
- ◆ **AG**: AG's news corpus, a large topic classification dataset constructed by (Zhang, Zhao, and LeCun 2015)

Experiment

Classification Results

Models	MR	SST	Subj	AG
LSTM	77.4*	46.4*	92.2	90.9
biLSTM	79.7*	49.1*	92.8	91.6
CNN	81.5*	48.0*	93.4*	91.6
RAE	76.2*	47.8	92.8	90.3
Tree-LSTM	80.7*	50.1	93.2	91.8
Self-Attentive	80.1	47.2	92.5	91.1
ID-LSTM	81.6	50.0	93.5	92.2
HS-LSTM	82.1	49.8	93.7	92.5

Examples by ID-LSTM/HS-LSTM

Origin text	Cho continues her exploration of the outer limits of raunch with considerable brio.			
ID-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.			
HS-LSTM	Cho continues her exploration of the outer limits of raunch with considerable brio.			
Origin text	Much smarter and more attentive than it first sets out to be.			
ID-LSTM	Much smarter and more attentive than it first sets out to be.			
HS-LSTM	Much smarter and more attentive than it first sets out to be.			
Origin text	Offers an interesting look at the rapidly changing face of Beijing.			
ID-LSTM	Offers an interesting look at the rapidly changing face of Beijing .			
HS-LSTM	Offers an interesting look at the rapidly changing face of Beijing.			

Results of ID-LSTM

Dataset	Length	Distilled Length	Removed
MR	21.25	11.57	9.68
SST	19.16	11.71	7.45
Subj	24.73	9.17	15.56
AG	35.12	13.05	22.07

Table 4: The original average length and distilled average length by ID-LSTM in the test set of each dataset.

Word	Count	Deleted	Percentage
of	1,074	947	88.18%
by	161	140	86.96%
the	1,846	1558	84.40%
's	649	538	82.90%
but	320	25	7.81%
not	146	0	0.00%
no	73	0	0.00%
good	70	0	0.00%
interesting	25	0	0.00%

31

Table 5: The most/least deleted words in the test set of SST.

Results of HS-LSTM

Models	SST-binary	AG's News
RAE	85.7	90.3
Tree-LSTM	87.0	91.8
Com-Tree-LSTM	86.5*	<u> </u>
Par-HLSTM	86.5	91.7
HS-LSTM	87.8	92.5

Table 8: Classification accuracy from structured models. The result marked with * is re-printed from (Yogatama et al. 2017).

Dataset	Length	#Phrases	#Words per phrase
MR	21.25	4.59	4.63
SST	19.16	4.76	4.03
Subj	24.73	4.42	5.60
AG	35.12	8.58	4.09

Table 9: Statistics of structures discovered by HS-LSTM in the test set of each dataset.

Summary

- A reinforcement learning method which learns sentence representation by discovering task-relevant structure
- Two representation models: ID-LSTM and HS-LSTM
- State-of-the-art performance & interesting task-relevant structures
- No direct supervision on structure → trial-and-error!
 - Policy gradient

Reinforcement Learning for Relation Classification from Noisy Data

Jun Feng, Minlie Huang, Li Zhao,
Yang Yang, Xiaoyan Zhu

AAAI 2018

Introduction to Relation Classification

Relation Classification (or extraction)

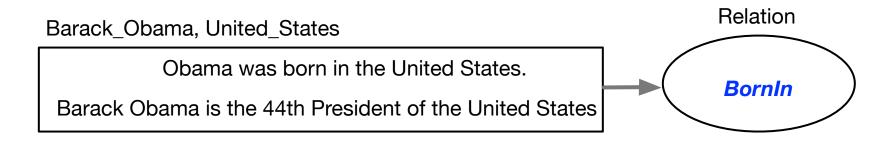
[Obama]_{e1} was born in the [United States]_{e2}.

Relation: BornIn

Distant Supervision (noisy labeling problem)

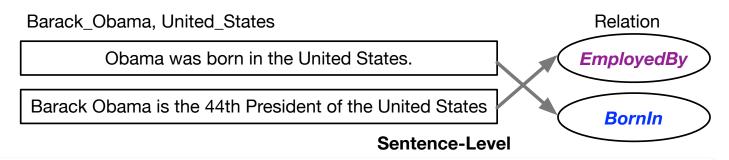
[Barack Obama]_{e1} is the 44th President of the [United States]_{e2}.

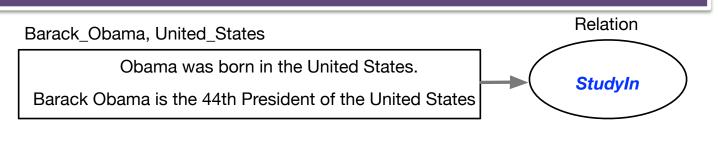
Triple in knowledge base:<Barack_Obama, *BornIn*, United_States>


Relation: **BornIn**

The Problem ...

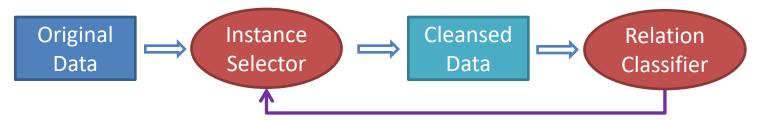
 Previous studies adopt multi-instance learning to consider the instance noises


Bag-Level



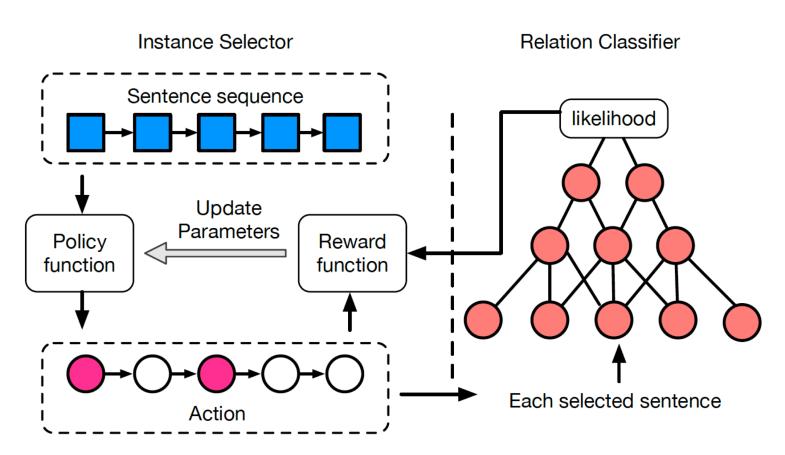
Motivation

- Two limitations of previous works:
 - ◆ Unable to handle the sentence-level prediction


How can we remove noisy data to improve relation extraction without explicit annotations?

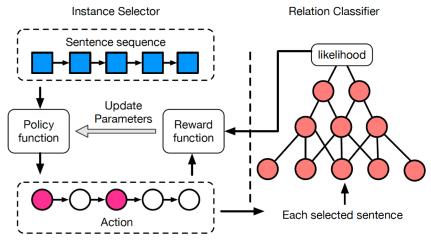
Model Structure

 The model consists of an instance selector and a relation classifier



- Challenges:
 - ◆ Instance selector has no explicit knowledge about which sentences are labeled incorrectly
 - Weak supervision -> delayed reward
 Trail-and-error search

 Reinforcement
 Learning
 - How to train the two modules jointly

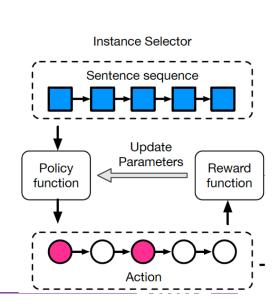


The Logic Why it Works

- Start from noisy data to pretrain relation classifier and instance selector
- Remove noisy data
- Train better classifier to obtain better reward estimator
- Train better policy with more accurate reward estimator
- Remove noisy data more accurately

Instance Selector

- Instance selection as a reinforcement learning problem
 - \diamond State: $F(s_i)$ the current sentence, the already selected sentences, and the entity pair
 - \diamond **Action**: $\{0,1\}$, select the current sentence or not


$$\pi_{\Theta}(s_i, a_i) = P_{\Theta}(a_i | s_i)$$

$$= a_i \sigma(\mathbf{W} * \mathbf{F}(s_i) + \mathbf{b})$$

$$+ (1 - a_i)(1 - \sigma(\mathbf{W} * \mathbf{F}(s_i) + \mathbf{b}))$$

◆ Reward: the total likelihood of the sent. bag

$$r(s_i|B) = \begin{cases} 0 & i < |B| + 1\\ \frac{1}{|\hat{B}|} \sum_{x_j \in \hat{B}} \log p(r|x_j) & i = |B| + 1 \end{cases}$$

Instance Selector

Optimization:

♦ Maximize the expected total rewards

$$J(\Theta) = V_{\Theta}(s_1|B)$$

$$= E_{s_1,a_1,s_2,...,s_i,a_i,s_{i+1}...} \left[\sum_{i=0}^{|B|+1} r(s_i|B) \right]$$

◆ Update parameters with the **REINFORCE** algorithm

$$\Theta \leftarrow \Theta + \alpha \sum_{i=1}^{|B|} v_i \nabla_{\Theta} \log \pi_{\Theta}(s_i, a_i)$$

Relation Classifier

A CNN architecture to classify relations

$$\mathbf{L} = \text{CNN}(\mathbf{x})$$

$$p(r|x; \mathbf{\Phi}) = softmax(\mathbf{W}_r * tanh(\mathbf{L}) + \mathbf{b}_r)$$

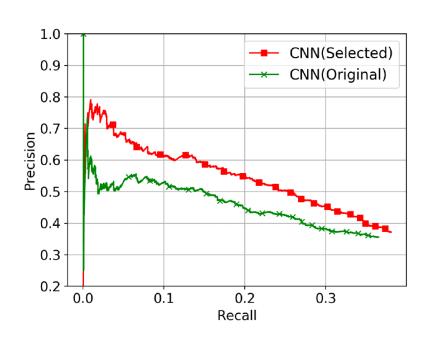
Optimization: cross-entropy as the objective function

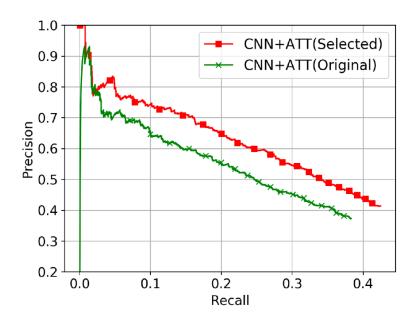
$$\mathcal{J}(\Phi) = -\frac{1}{|\hat{X}|} \sum_{i=1}^{|X|} \log p(r_i|x_i; \Phi)$$

Training Procedure

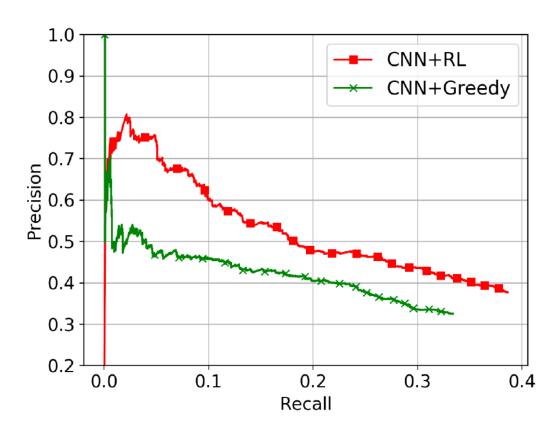
- Overall Training Procedure
 - 1. Pre-train the CNN model of the relation classifier
 - 2. Pre-train the policy network of the instance selector with the CNN model fixed
 - 3. Jointly train the CNN model and the policy network

- Dataset
 - ◆ NYT and developed by (Riedel, Yao, and McCallum 2010)
- Baselines
 - ◆ CNN: is a sentence-level classification model. It does not consider the noisy labeling problem.
 - ◆ CNN+Max: assumes that there is one sentence describing the relation in a bag and chooses the most correct sentence in each bag.
 - ◆ CNN+ATT: adopts a sentence-level attention over the sentences in a bag and thus can down weight noisy sentences in a bag.


Sentence-Level Relation Classification


Method	Macro F_1	Accuracy
CNN	0.40	0.60
CNN+Max	0.06	0.34
CNN+ATT	0.29	0.56
CNN+RL(ours)	0.42	0.64

• The performance of the instance selector



• The performance of the instance selector

Case Study

Bag I (Entity Pair: fabrice_santor, france; Relation:/people/person/nationality)	CNN+RL	CNN+ATT	CNN+Max
though not without some struggle, federer, the world 's top-ranked player, advanced to the fourth round with a thrilling, victory over the crafty fabrice_santoro of france , who is ranked 76th.	1	0.60	0
in his quarterfinal, nalbandian overwhelmed unseeded fabrice_santoro of france	1	0.39	1
fabrice_santoro , 33, of france finally reached the quarterfinals in a major on his 54th attempt by defeating the 11th-seeded spaniard david ferrer	1	0.01	0
Bag II (Entity Pair: jonathan_littel, france; Relation:/people/person/nationality)			
jonathan_littell , a new york-born writer whose french-language novel about a murderous and degenerate officer has been the sensation of the french publishing season, on monday became the first american to win france 's most prestigious literary award, the prix goncourt	0	0.89	1
after a languid intercontinental auction that stretched for more than a week, the american rights to jonathan_littell 's novel les bienveillantes, which became a publishing sensation in france , have been sold to harpercollins, the publisher confirmed yesterday.	0	0.11	0

Summary

- A new model to extract relations from noisy data.
- Merely with a weak supervision signal from the relation classifier.
- The idea for **instance selection** can be generalized to other tasks that employ noisy data or distant supervision.
- Weak supervision: no annotation on which sentence is noisy!

A Weakly Supervised Method for Topic Segmentation and Labeling in Goal-oriented Dialogues via Reinforcement Learning

Ryuichi Takanobu, Minlie Huang,
Zhongzhou Zhao, Haiqing Chen, et al.
IJCAI 2018

Motivation

- Customer service dialogues are commonly seen in large-scale web services
- Topic segmentation and labeling is a coarse-grained intent analysis, a key step to dialogue understanding
- Dialogue structure analysis is an important task in goaloriented dialogue systems

The Problem ...

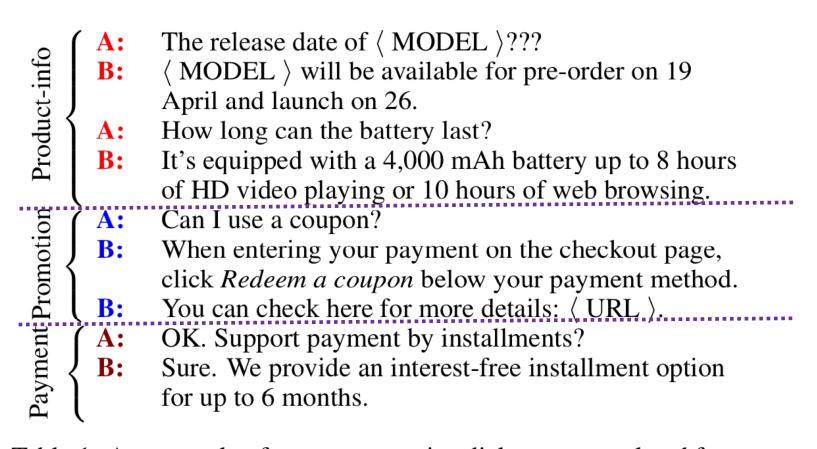
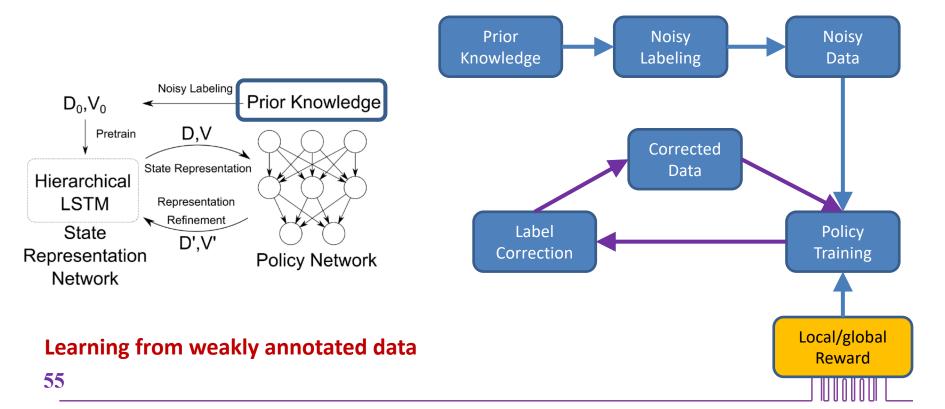


Table 1: An example of customer service dialogues, translated from Chinese. Utterances in the same color are of the same topic.

The Problem ...

Datasets	SmartPhone	Clothing
# Topic category	7	10
# Training session	12,315	10,000
# Training utterance	430,462	338,534
# Gold-standard session	300	315
# Gold-standard utterance	10,888	10,962

Table 2: Statistics of the corpus.


How can we do topic labeling on these large-scale dialogues without much annotation efforts?

Central Idea

Noisy labeled data → learn policies with reward → refine
 data → learn better policies → refine more data

- State Representation Network
- Policy Network

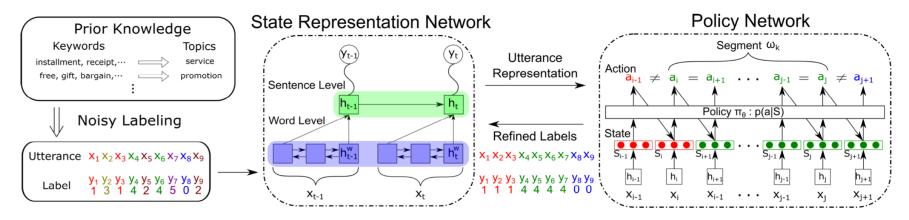


Figure 1: Illustration of the model. SRN adopts a hierarchical LSTM to represent utterances and provides state representations to PN. Data labels are refined to retrain SRN and PN to learn better state representations and policies. The label y and the action a are in the same space.

 Local topic continuity: the same topic will continue in a few dialogue turns

$$r_{int} = \frac{1}{L-1} sign(a_{t-1} = a_t) \cos(\mathbf{h}_{t-1}, \mathbf{h}_t)$$

 Global topic structure: high content similarity within segments but low between segments

$$r_{delayed} = \frac{1}{N} \sum_{\omega \in X} \frac{1}{|\omega|} \sum_{X_t \in \omega} \cos(\mathbf{h}_t, \boldsymbol{\omega})$$
$$- \frac{1}{N-1} \sum_{(\omega_{k-1}, \omega_k) \in X} \cos(\boldsymbol{\omega}_{k-1}, \boldsymbol{\omega}_k)$$

(a) Topic Segmentation (MAE and WI	(a)	Topic	Segmentation	(MAE and	WD
------------------------------------	-----	-------	--------------	----------	----

Model	SmartI	Phone	Clothing		
Model	MAE	WD	MAE	WD	
TextTiling(TT)	13.09	.802	16.32	.948	
TT+Embedding	3.59	.564	3.17	.567	
STM	4.37	.505	8.85	.669	
NL+HLSTM	8.25	.632	16.26	.925	
Our method	2.69	.415	2.74	.446	

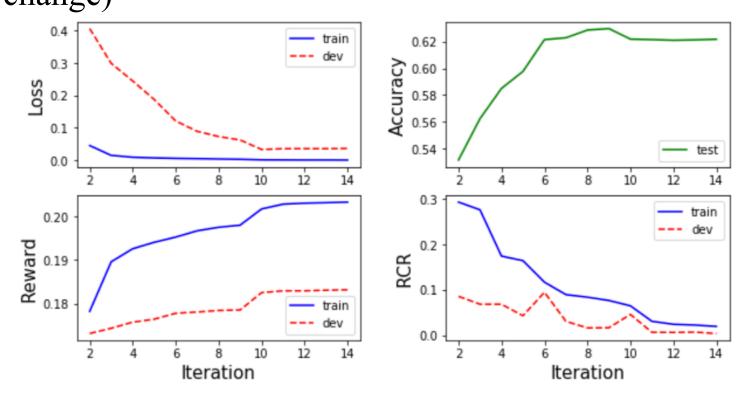
(b) Topic Labeling (Accuracy)

Model	SmartPhone	Clothing
Keyword Matching	39.8	31.8
NL	51.4	39.0
NL+LSTM	49.6	35.5
NL+HLSTM	52.6	40.1
Our method	62.2	48.0

(a)

Madal	# Key	# Keywords per topic					
Model	3	6	9				
NL	45.0	51.4	48.0				
NL+HLSTM	46.6	52.6	48.8				
Our method	55.3	62.2	58.2				

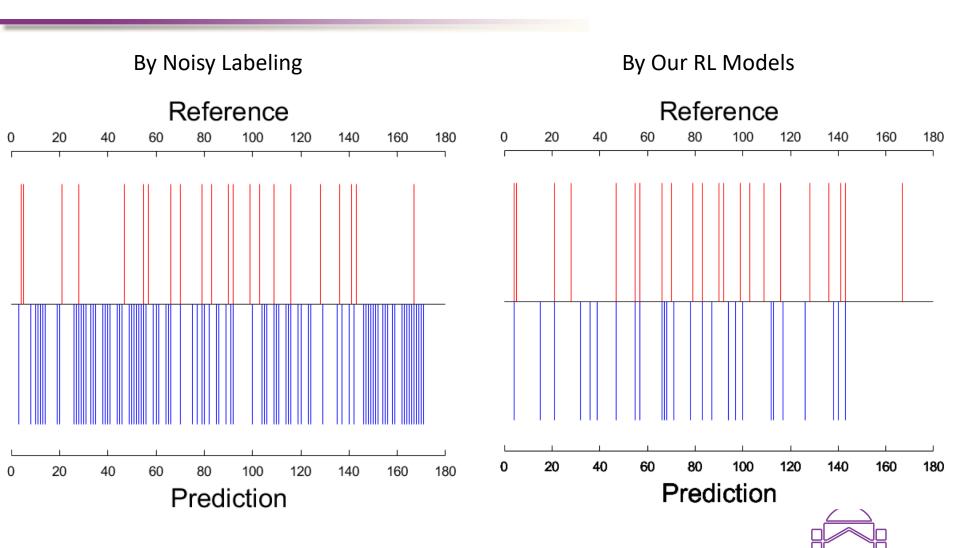
(b)


SubSets	KM	1-NN
Utterances	3,503	7,385
NL	78.7	38.4
NL+HLSTM	78.6	40.2
Our method	79.0	54.2

(c)

Model Cettine	Segmen	Labeling	
Model Setting	MAE	WD	Acc
$RL + r_{int}$	3.04	.449	59.5
$RL + r_{delayed}$	3.89	.490	60.4
$RL + r_{int} + r_{delayed}$	2.69	.415	62.2

 Training converges well (loss, reward, accuracy, relative data change)



Visualization Examples

60

Summary

- Start from noisy labeled data (avoiding expensive full annotation)
- Instead of removing noisy data, correct the noisy labels using reinforcement learning
- Weak supervision: what we need is just a set of keywords and some prior knowledge!

Reinforcement Learning in Search

- Usually multi-turn interactions
 - Could be natural sequential decision problems
 - ◆ For instance, search result diversification
- No direct supervision on which you should do at each step
- Only implicit feedbacks from user behavior data
 - Not necessarily as direct supervision
 - ◆ Good as **reward signals** for RL

Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning

Jun Feng, Heng Li, **Minlie Huang**, Shichen Liu, Wenwu Ou, Zhirong Wang and Xiaoyan Zhu

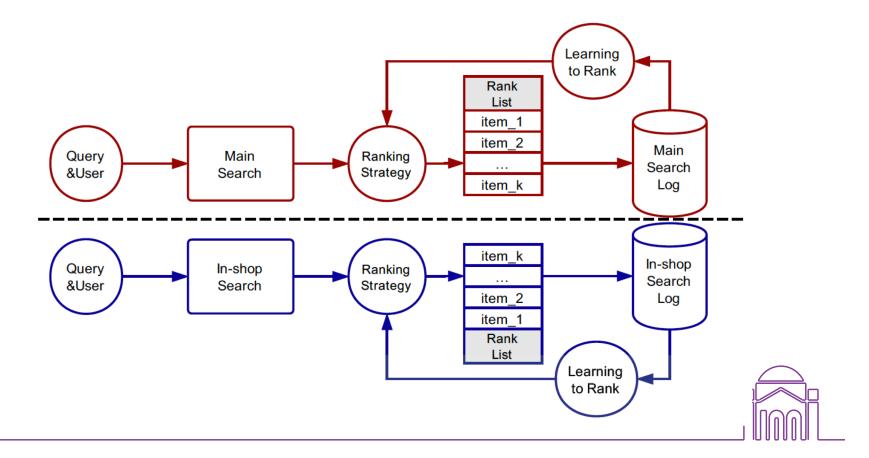
WWW 2018

Background

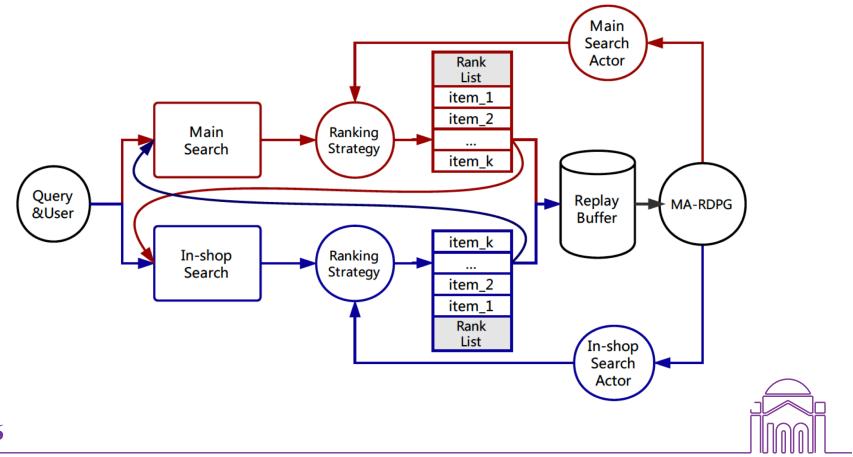
 Multi-scenario Ranking: most large-scale online platforms or mobile Apps have multiple scenarios

Main-search

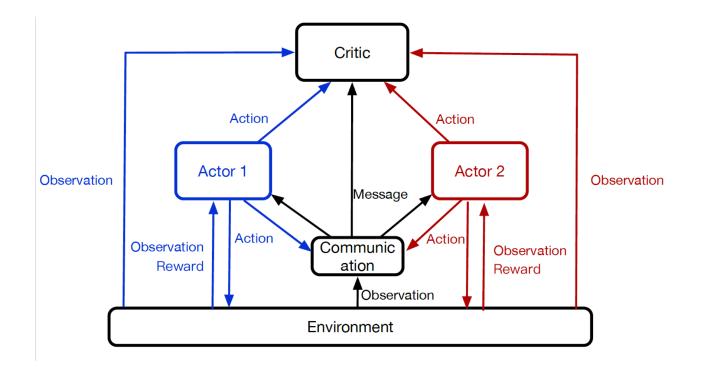
In-shop Search

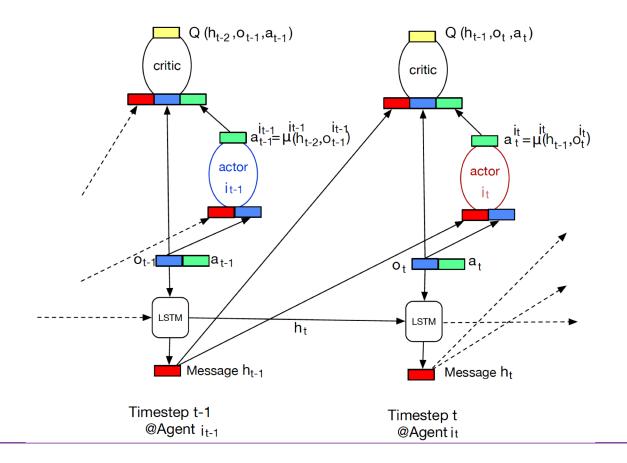


Motivation

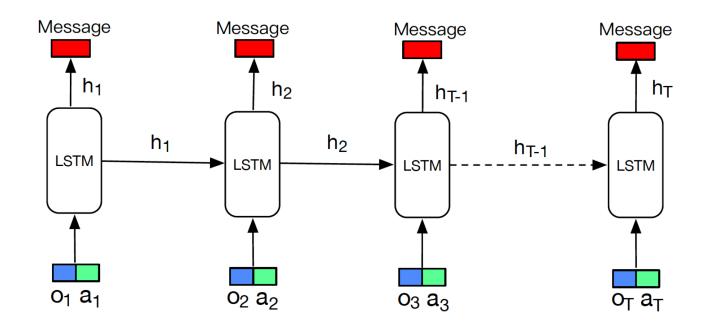

 Previous methods separately optimized each individual ranking strategy in each scenario

Motivation


Joint Optimization of Multi-scenario Ranking


Model Overview

 Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)


 Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)

 Communication Component: make the agents collaborate better with each other by sending messages

$$h_{t-1} = LSTM(h_{t-2}, [o_{t-1}; a_{t-1}]; \psi)$$

• **Private Actor**. Each agent has a private actor which receives local observations and shared messages, and makes its own actions.

$$a_t^{i_t} = \mu^{i_t}(s_t; \theta^{i_t}) \approx \mu^{i_t}(h_{t-1}, o_t^{i_t}; \theta^{i_t})$$

• Centralized Critic: an action-value function to approximate the future overall rewards obtained by all the agents

$$Q(s_t, a_t^1, a_t^2, \dots, a_t^N; \phi)$$

$$= r_t + Q(s_{t+1}, a_{t+1}^1, a_{t+2}^2, \dots, a_{t+1}^N; \phi)$$

Training Procedure

• The centralized critic is trained using the Bellman equation

$$L(\phi) = \mathbb{E}_{h_{t-1},o_t}[(Q(h_{t-1},o_t,a_t;\phi) - y_t)^2]$$

$$y_t = r_t + \gamma Q(h_t, o_{t+1}, \mu^{l_{t+1}}(h_t, o_{t+1}); \phi)$$

• The private actor is updated by maximizing the expected total rewards with respect to the actor's parameters

$$J(\theta^{i_t}) = \mathbb{E}_{h_{t-1},o_t}[Q(h_{t-1},o_t,a;\phi)|_{a=\mu^{i_t}(h_{t-1},o_t;\theta^{i_t})}]$$

Training Procedure

ALGORITHM 1: MA-RDPG

Initialize the parameters $\theta = \{\theta^1, \dots, \theta^N\}$ for the *N* actor networks and ϕ for the centralized critic network.

Initialized the replay buffer *R*

for each training step e do

```
for i = 1 to M do
    h_0 = initial message, t = 1
    while t < T and o_t \neq terminal do
        Select the action a_t = \mu^{i_t}(h_{t-1}, o_t) + \mathcal{N}_t for the
          active agent i_t with an exploration noise
        Receive reward r_t and the new observation o_{t+1}
        Generate the message h_t = LSTM(h_{t-1}, [o_t; a_t])
          t = t + 1
    end
    Store episode \{h_0, o_1, a_1, r_1, h_1, o_2, r_2, h_3, o_3, \dots\} in R \longrightarrow Update the replay buffer
```

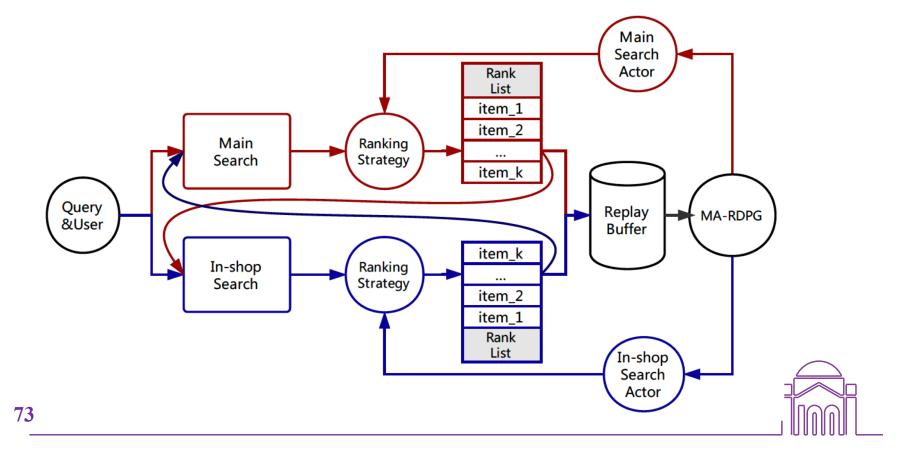
end

Sample a random minibatch of episodes *B* from replay buffer R

foreach *episode* in B **do**

```
for t = T downto 1 do
    Update the critic by minimizing the loss:
      L(\phi) = (Q(h_{t-1}, o_t, a_t; \phi) - y_t)^2, where
      y_t = r_t + \gamma Q(h_t, o_{t+1}, \mu^{i_{t+1}}(h_t, o_{t+1}); \phi)
    Update the i_t-th actor by maximizing the critic:
     J(\theta^{i_t}) = Q(h_{t-1}, o_t, a; \phi)|_{a = \mu^{i_t}(h_{t-1}, o_t; \theta^{i_t})}
    Update the communication component.
end
```

→ Generate new episode


- Sample training batch from replay buffer

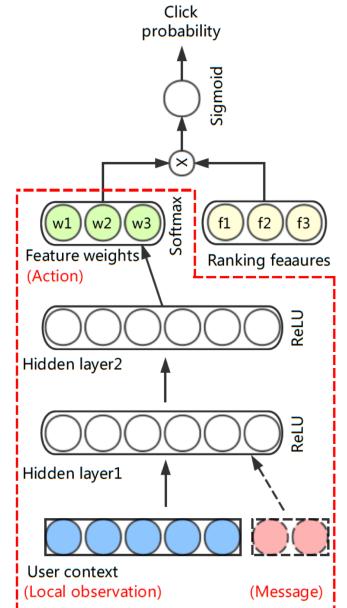
Update the parameters of:

- **Centralized Critic**
- Private actor
- **Communication Component**

 Jointly optimize the ranking strategies in two search scenarios in Taobao

How Training Happens

- Step 1: Start from a base ranking algorithm
- Step 2: Collect user feedback data with the current ranking system
- **Step 3**: Train our MA-RDPG algorithm to obtain new ranking weights (i.e., the action of the agents by deterministic policy)
- Step 4: Apply the new weights to the online ranking systems
- Goto Step 2 until convergence


- The observations, actions, rewards for the agents:
 - ♦ **Observations**: the features of each ranking scenarios
 - the attributes of the customer (age, gender, purchasing power, etc.)
 - the properties of the customer's clicked items (price, conversion rate, sales volume, etc.)
 - the query type and the scenario index (main or in-shop search)

- The observations, actions, rewards for the agents:
 - ◆ Actions: the weight vector for the ranking features
 - Continuous actions, deterministic policies

$$a_t^{i_t} = \mu^{i_t}(s_t; \theta^{i_t}) \approx \mu^{i_t}(h_{t-1}, o_t^{i_t}; \theta^{i_t})$$

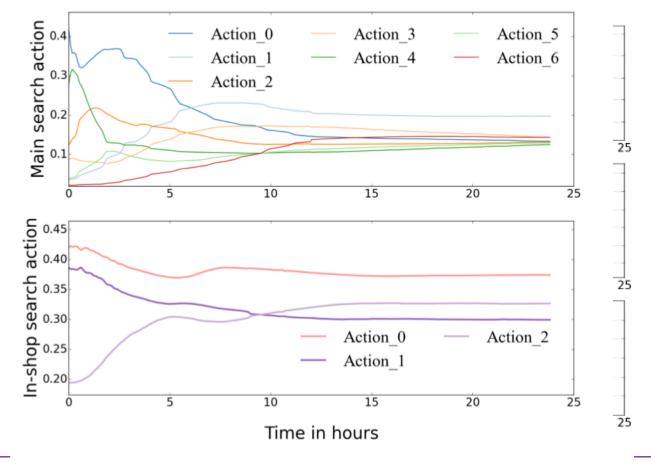
- The observations, actions, rewards for the agents:
 - ◆ Rewards: user feedback on the presented product list
 - if a purchase behavior happens, reward = the price of the bought product
 - if a click happens, reward = 1
 - if there is no purchase nor click, reward = -1
 - if a user leaves the page without buying any product, reward = -5.

Experiment Results

GMV gap evaluated on an online Taobao platform

Relative improvement against EW+EW

day	I	EW + L2R		L2R + EW		L2R + L2R			MA-RDPG			
day	main	in-shop	total	main	in-shop	total	main	in-shop	total	main	in-shop	total
1	0.04%	1.78%	0.58%	5.07%	-1.49%	3.04%	5.22%	0.78%	3.84%	5.37%	2.39%	4.45%
2	0.01%	1.98%	0.62%	4.96%	-0.86%	3.16%	4.82%	1.02%	3.64%	5.54%	2.53%	4.61%
3	0.08%	2.11%	0.71%	4.82%	-1.39%	2.89%	5.02%	0.89%	3.74%	5.29%	2.83%	4.53%
4	0.09%	1.89%	0.64%	5.12%	-1.07%	3.20%	5.19%	0.52%	3.74%	5.60%	2.67%	4.69%
5	-0.08%	2.24%	0.64%	4.88%	-1.15%	3.01%	4.77%	0.93%	3.58%	5.29%	2.50%	4.43%
6	0.14%	2.23%	0.79%	5.07%	-0.94%	3.21%	4.86%	0.82%	3.61%	5.59%	2.37%	4.59%
7	-0.06%	2.12%	0.62%	5.21%	-1.32%	3.19%	5.14%	1.16%	3.91%	5.30%	2.69%	4.49%
avg.	0.03%	2.05%	0.66%	5.02%	-1.17%	3.09%	5.00%	0.87%	3.72%	5.43%	2.57%	4.54%


Recent results online: MA-RDPG gains 3% improvement against L2R+L2R

Experiment Results

79

Learning process of the loss function, critic value and GMV gap

Summary

- Multi-scenario ranking (or optimization) as a fully cooperative, partially observable, multi-agent sequential decision problem
- Multi-agent, deterministic policy RL to enable multiple agents to work collaboratively to optimize the overall performance.
- Significant gain in improving ranking systems in real online service (Taobao)
- Learning from user feedback, through interactions!

Messages and Lessons

- Keys to the success of RL in NLP
 - ◆ Formulate a task as a **natural sequential decision** problem where current decisions affect future ones!
 - ◆ Remember the **nature** of **trial-and-error** when you have no access to full, strong supervision.
 - Encode the expertise or prior knowledge of the task in rewards.
 - ◆ Applicable in many **weak supervision** settings.

Messages and Lessons

- Lessons we learned
 - ◆ A warm-start is important, using pre-training (due to too many spurious solutions and too sparse rewards)
 - Very marginal improvements to full supervision settings
 - Very marginal improvements for large action space problems (e.g., language generation)
 - Patient enough to the training tricks and tunings

Thanks for Your Attention

- Minlie Huang, Tsinghua University
- aihuang@tsinghua.edu.cn
- http://coai.cs.tsinghua.edu.cn/hml

