Reinforcement Learning in Natural
Language Processing and Search

Minlie Huang (HEKZ)

Dept. of Computer Science,

Tsinghua University

aihuang@tsinghua.edu.cn

http://coai.cs.tsinghua.edu.cn/hml



mailto:aihuang@tsinghua.edu.cn
http://coai.cs.tsinghua.edu.cn/hml

About Me (Minlie Huang)

® Associate Professor, CS Department, Tsinghua University

® Homepage: http://coai.cs.tsinghua.edu.cn/hml

® Research Interests

¢ Deep learning

¢ Deep reinforcement learning

¢ Generalized QA: QA, Read Comprehension, Story Comprehension
¢ Dialogue systems: task-oriented, open-domain

¢ Language generation

¢ Sentiment/Emotion understanding
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Our Recent Works on RL

@ Brief Introduction to reinforcement learning (RL)
® Learning Structured Representation with RL (AAAT 2018)
¢ Policy gradient

@ Relation Classification from Noisy Data (AAAI 2018)

& AiEPaperWeekly 20174E & iR {EF1EAI 10 NLPIE
¢ Policy gradient

® Weakly Supervised Topic Labeling in Customer Dialogues (IJCAI-ECAI 2018)
¢ Policy gradient

@® Learning to Collaborate: Joint Ranking Optimization (WWW 2018)

¢ Multi-agent reinforcement learning; deterministic policy; actor-critic
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Reinforcement Learning

Agent

T e
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At each step t:

* The agent receives a state S, from the
environment

* The agent executes action A, based on
the received state

* The agent receives scalar reward R,
from the environment

* The environment transfers into a new
state S,

AN
oo
http://wwwoO.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf
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Maze Example

Start

States: Agent’s location
Actions: N, E, S, W

Rewards:

e 100 if reaching the goal
 -100 if reaching the dead end
* -1 pertime-step

Goal

http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf DWD
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State,
Stimulus,
Situation

Agent

Reward,

Gain, Payoff,

Cost

Environment
(world)

—

Action,

Response,

Control

Deep learning to represent states, actions,
or policy functions

Robotics, control

@

n i
i

Language interaction

System operating
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Reinforcement Learning

® Markov Decision Process

S; — state
0; — observation mo(at|o;) — policy
a; — action er(atlst) — policy (fully observed)‘l

N N BN N NN SN S EEN EEN NN EEN EEN NN EEN S SN SN S SN SN N B S S .

Markov property
independent of s;_
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7 From ICML Tutorial by Sergey Levine and Chelsea Finn H“"ﬂ"l”“ ‘




Reinforcement Learning

\ J

T
po(s1,ai,. .. ST,aT H (at|st)p(st+1(st, at)

1 I

7T9(7') Markov chain

Pe(St, at) state-action marginal

pg(S, a) stationary distribution

0* = arg mgax E(s.a)~po(s,a) r(s,a)

AN
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8 From ICML Tutorial by Sergey Levine and Chelsea Finn HMH\




Reinforcement Learning

compute Q = ZtT,:t A ~tr, (MC policy gradient)
fit a model to fit Q4(s,a) (actor-critic, Q-learning)

estimate return estimate p(s’|s,a) (model-based)

generate samples

(i.e. run the policy)

0 < 0+ aVyJ(0) (policy gradient)

7(s) = argmax Q4(s,a) (Q-learning)
optimize mg(als) (model-based)

improve the policy

£
From ICML Tutorial by Sergey Levine and Chelsea Finn Dml:]u
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Policy Gradient

J(0) = Epory o [r(7)] = / 7o (7)1 (7)dr

Vo J(0) :/VQTI'Q(T)’I"(T)dT

= /mg(T)Vg log g (7)r(7)dT

) mo(7)Vglog mg(T) = mo(7) v;_;T(HT()T) = Vmo(T)




Policy Gradient

wr

VoJ(0) = | Vomg(T)r(r)dr

= / 7o (T)Vglogmg(7T)r(T)dT

= Errory(r)[Veolog mo()r(7)]

VoJ(0) = Errony(r) {(Z Vg log We(atst)) (Z r(st, at))}

1 t=1



Reinforcement Learning

® Sequential decision: current decision affects future decision

® Trial-and-error: just try, do not worry making mistakes

¢ Explore (new possibilities)
¢ Exploit (with the current best policy)

@ Future reward: maximizing the future rewards instead of

just the intermediate rewards at each step

r(s,a)= E[Rtﬂ +YRes2 + Y Rez + - - | St=s,Ar=a, At+1:ooN7T}

12 qﬂ'(57 a) — E[Rt—{—l _I_ fyqﬂ'(St_l_]_, At+1) | St:S,At:a’At+1N7T:|




Applying RL in NLP

® Challenges

¢ Sparse reward (few feedback when making decisions)
¢ Difficulty in reward function design
¢ High-dimensional action space

¢ High variance in training RL algorithms

@ Strengthens of RL

¢ Weak supervision without explicit annotations
¢ Trial-and-error: probabilistic exploring

¢ Accumulative rewards: encoding expert/prior knowledge in
reward design

g imil




Applying RL in NLP

® Immediate rewards: t could be word/sentence

Agent scan

: imil




Applying RL in NLP

» Comparing with gold-
® Delayed rewards standard: BLEU\ACC\F1

» By classifier: likelihood

Reward Estimator » Prior/domain expertise:

sparsity or continuity

Agent scan £
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Learning Structured
Representation for Text
Classification
via Reinforcement Learning

Tianyang Zhang, Minlie Huang, Li Zhao

AAAT 2018



Background

® Non-Sstructure model [ The actors are fantastic . They are what ]
makes it worth the trip to the theater .
¢ CNN, RNN, LSTM l
¢ Bag-of-words models (BM. AE)
Sentence Representation

@ Using parsing structures |
¢ Recursive autoencoders [ 000000000 ]
@ Tree-structured LSTM l

® Auto-learned structure

¢ Binary tree, overly deep

£
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The Problem ..

® How can we identify task-relevant structures without

explicit annotations on structure?

Origin text | Cho continues her exploration of the outer limits of raunch with considerable brio .
ID-LSTM | Cho continues her exploration of the outer limits of raunch with considerable brio .
HS-LSTM | Cho | continues her exploration | of the outer limits of raunch ‘ with considerable | brio .
Origin text | Much smarter and more attentive than it first sets out to be .

ID-LSTM | Much smarter and meore attentive than it first sets out to be .

HS-LSTM | Much smarter | and more attentive | than it first sets out to be .

Origin text | Offers an interesting look at the rapidly changing face of Beijing .

ID-LSTM | Offers an interesting look at the rapidly changing face of Beijing .

HS-LSTM | Offers | an interesting look } at the rapidly changing | face of Beijing { :

@ Challenges

¢ NO explicit annotations on structure-weak supervision
¢ Trial-and-error, measured by delayed rewards

. imil




Model Structure

) ] Classification
Policy Network(PNet) Structured Representation Model Network(CNet)
a, ay - dy - dp action action  d ) ay - : ay - dp rcpsrtt‘:rs]'lct::‘ion L

A L— E— . . . S
N a, NG N N N Nl i
A~ o A~ N state (8 o 8 e 8¢ Jomee (ST
| Y | | )-: S". Jmeas ).| Ry t | >t ,..’ S’L :, e St ] " \_ =/ -/ o -
word input X, Xy e Xy e XL - |~
Delayed Reward: P(y|X)

@ Policy Network:

¢ Samples an action at each state

¢ Two models: Information Distilled LSTM, Hierarchically Structured LSTM
@ Structured Representation Model: transfer action sequence to representation

® Classification Network: provide reward signals

3 imil




Policy Network (PNet)

® State s;

¢ Encodes the current input and previous contexts
¢ Provided by different representation models

® Action a;

¢ {Retain, Delete} in Information Distilled LSTM
¢ {Inside, End} in Hierarchically Structured LSTM

¢ m(a;|s;0) =o(W s+ b)

® Reward r;

¢ Calculated from the classification likelihood
¢ A factor considering the tendency of structure selection

22
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Policy Network (PNet)

® Maximize the expected reward:
‘](@) — E(St,at)NP@(St,at)r(Sla’l to SLa’L)

Z P@(Sla,1 "'SLCLL)RL

Si1a1---Sr.ary,

= Z p(s1) H To(a¢|St)p(St+1(st, ar) Rr

Siai---SLaAr

= > ]Irme(alse)Re.

si1a1---spay, t

@ Update the policy network with policy gradient:

L
V@J(@) = Z RLV@ log W@(at|st)
t=1 £
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Classification Network (CNet)

® CNet 1s trained via cross entropy (loss function):

P(y|X) = softmaxr(Wshy, + bg),

=Y = Py, X)log P(y|X)

XeD y=1

x imil




Information Distilled LSTM (ID-LSTM)

@ Distill the most important words and remove irrelevant
words

@ Sentence representation: the last hidden state of ID-LSTM
P(y|X) = softmax(Wshy, 4+ bg)

Input words: e heat moment prevails
Actions: Delete Retain Delete Delete Retain Retain Delete

£
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Information Distilled LSTM (ID-LSTM)

® Action: {Retain, Delete}

® States:
St = Ct—1 D hy_1 D Xg,
Ci.hy = Ct—1, he—1, a; = Delete
o (I)(Ct—la ht—laxt)7 At — Retain
® Rewards:

Ry = log P(cg|X) +yL'/L

/

the tion of th ber of deleted RN
proportion of the number of delete . ]
26 words to the sentence length Hlﬁﬁﬂ I] |




@ Build a structured representation by discovering hierarchical
structures 1n a sentence

® Two-level structure:
¢ Word-level LSTM + phrase-level LSTM

¢ Sentence representation: the last hidden state of phrase-level

LSTM
Phrase-level hY @ Y @ Classification
Word-level @ @ @ @ @ @
Input words: Do you | hate | when that happens | ?

Actions: Inside End Inside End Inside Inside End End

S imil
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Hierarchically Structured LSTM(HS-LSTM

at—1 at

Structure Selection

Inside Inside

A phrase continues at x;.

® Action: {Inside, End} — 3% fng

A old phrase ends at x;.

End Inside

A new phrase begins at x;.

End End

x+ 1 a single-word phrase.

® States: St =Ci_1 Dhi_; ©c’ ©hy

CIDw(O, O, Xt),

Word-level LSTM ¢, hy’ = { d¥(c¥ 1, hY¥ |, x¢)
—1> —1» )

Phrase-level LSTM cp, hy = { P 'h
Ct—1>Dg—1>

a;r—1 = End
a;—1 = Inside

®P(ct_4,hy ,hY), a; = End

a; = Inside

® Rewards:

Ry =log P(cy|X) H{~(L'/L +0.1L/L")

/ £

28

a unimodal function of the number of phrases (a good phrase Dmljﬂu
structure should contain neither too many nor too few phrases) ‘ \ I




Experiment

® Dataset

29

¢ MR: movie reviews (Pang and Lee 2005)

¢ SST: Stanford Sentiment Treebank, a public sentiment analysis
dataset with five classes (Socher et al. 2013)

¢ Subj: subjective or objective sentence for subjectivity
classification (Pang and Lee 2004)

¢ AG: AG’s news corpus, a large topic classification dataset
constructed by (Zhang, Zhao, and LeCun 2015)

£
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Experiment

Models MR SST Subj AG

] . LSTM 77.4*% 46.4* 922 909

® (Classification Results biLSTM 79.7%  49.1* 928 91.6
CNN 81.5% 48.0* 93.4* 91.6

RAE 76.2*% 478 92.8 90.3

Tree-LSTM 80.7% §50.1 932 918
Self-Attentive | 80.1 472 925 9l1.1
ID-LSTM 81.6 500 935 922
HS-LSTM 82.1 498 93.7 925

® Examples by ID-LSTM/HS-LSTM

Origin text | Cho continues her exploration of the outer limits of raunch with considerable brio .
ID-LSTM | Cho continues her exploration of the outer limits of raunch with considerable brio .
HS-LSTM | Cho | continues her exploration | of the outer limits of raunch | with considerable | brio .

Origin text | Much smarter and more attentive than it first sets out to be .
ID-LSTM | Much smarter and more attentive than it first sets out to be .
HS-LSTM | Much smarter | and more attentive | than it first sets out to be .

Origin text | Offers an interesting look at the rapidly changing face of Beijing .
ID-LSTM | Offers an interesting look at the rapidly changing face of Beijing .
HS-LSTM | Offers | an interesting look | at the rapidly changing | face of Beijing | .

T Luuoo L—




Results of ID-LSTM

Dataset | Length | Distilled Length | Removed
MR 21.25 11.57 9.68
SST 19.16 11.71 7.45
Subj 24.73 9.17 15.56
AG 35.12 13.05 22.07

Table 4: The original average length and distilled average

length by ID-LSTM 1n the test set of each dataset.

Word Count | Deleted | Percentage
of 1,074 947 88.18%
by 161 140 86.96%
the 1,846 1558 84.40%
's 649 538 82.90%
but 320 25 7.81%
not 146 0 0.00%
no 73 0 0.00%
good 70 0 0.00%
interesting 25 0 0.00%

31 Table 5: The most/least deleted words in the test set of SST.

£
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Results of HS-LSTM

Models SST-binary | AG’s News
RAE 85.7 90.3
Tree-LSTM 87.0 91.8
Com-Tree-LSTM 86.5%* —
Par-HLSTM 86.5 91.7
HS-LSTM 87.8 92.5

32

Table 8: Classification accuracy from structured models. The
result marked with * is re-printed from (Yogatama et al.

2017).
Dataset | Length | #Phrases | #Words per phrase
MR 21.25 4.59 4.63
SST 19.16 4.76 4.03
Subj 24.73 4.42 5.60
AG 35.12 8.58 4.09

Table 9: Statistics of structures discovered by HS-LSTM in

the test set of each dataset.

imil




Summary

@ A reinforcement learning method which learns sentence
representation by discovering task-relevant structure

® Two representation models: ID-LSTM and HS-LSTM

@ State-of-the-art performance & interesting task-relevant
structures

@ No direct supervision on structure = trial-and-error!
¢ Policy gradient

£
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Reinforcement Learning for
Relation Classification from
Noisy Data

Jun Feng, Minlie Huang, Li Zhao,

Yang Yang, Xiaoyan Zhu

AAAT 2018
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Introduction to Relation Classification

@ Relation Classification (or extraction)

[Obama]_, was born in the [United States].,.

4

Relation: Bornin

@ Distant Supervision (noisy labeling problem)
[Barack Obama]_, is the-44th-President-of the [United States],,.

Triple in knowledge base:<Barack _Obama, Bornin, United States>

¢

Relation: Bornin 7\

s imil




The Problem ..

® Previous studies adopt multi-instance learning to consider
the 1nstance noises

Barack_Obama, United_States Relation
Obama was born in the United States. .
Barack Obama is the 44th President of the United States
Bag-Level
AN
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Motivation

® Two limitations of previous works:

¢ Unable to handle the sentence-level prediction

Barack_Obama, United_States Relation

Obama was born in the United States. EmployedBy
Barack Obama is the 44th President of the United States @

Sentence-Level

How can we remove noisy data to improve relation

extraction without explicit annotations?

Barack_Obama, United_States Relation

Obama was born in the United States.
Barack Obama is the 44th President of the United States £\
ﬁﬁr L
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Model Structure

® The model consists of an instance selector and a relation
classifier

Original : Instance : Cleansed : Relation
Selector Classifier

@ Challenges:

¢ Instance selector has no explicit knowledge about which
sentences are labeled incorrectly

* Weak supervision -> delayed reward Reinforcement

e Trail-and-error search Learning

¢ How to train the two modules jointly .

. imil




Model Structure

Instance Selector Relation Classifier

— likelihood |

Update

Policy < Parameters | Reward '
function function

 @~-O0~-@-O-Oi_1 f

Each selected sentence

" imil




The Logic Why it Works

@ Start from noisy data to pretrain relation classifier and instance

selector
Instance Selector Relation Classifier
® Remove noisy data B-E-E-E-m

____________________

Update

|
® Train better classifier to obtain _ paranetes m‘_L
function |
better reward estimator v 1 G
i "O_"'O'O '_I> Each selectId sentence
@ Train better policy with more N e /
accurate reward estimator
® Remove noisy data more accurately

. imil




Instance Selector

@ Instance selection as a reinforcement learning problem

¢ State: F(s;) the current sentence, the already selected sentences,
and the entity pair

¢ Action: {0,1}, select the current sentence or not

Te(si,a;) = Pol(a;|s;)
— CLZO'(W * F(SZ) _|_ b) Instance Selector

---------------------

+ (1 — Q; )(1 — O'(W F( ) _|_ b)) i Sentence sequence i
14 Reward the total likelihood of the sent. bag """""""""""""

. Parameters Reward
O 'l < |B| _|_ 1 i functlon
r(si|B) = |B| > logp(r|xz;) i=|B|+1 Y ______________l.

T EB :
41 : Action /l

____________________

Update




Instance Selector

® Optimization:
¢ Maximize the expected total rewards
J(©) = Veo(s1|B)

| B|+1

— Esl,al,32,...,3.i,a7;,s7;+1...[ Z T(S’L|B)]
1=0

¢ Update parameters with the REINFORCE algorithm
| B

O+ 6 + aZviV@ lOgﬂ'@(Siaa’i)
i=1 N

: imil




Relation Classifier

® A CNN architecture to classify relations
L = CNN(x)
p(r|x; @) = softmax(W, x tanh(L) + b,.)

® Optimization: cross-entropy as the objective function

|X]

(ri|xs; @
|X|

£
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Training Procedure

® Overall Training Procedure

1. Pre-train the CNN model of the relation classifier

2. Pre-train the policy network of the instance selector with the
CNN model fixed

3. Jointly train the CNN model and the policy network

: imil




Experiment

® Dataset
¢ NYT and developed by (Riedel, Yao, and McCallum 2010)

® Baselines

® CNN: 1s a sentence-level classification model. It does not
consider the noisy labeling problem.

¢ CNN+Max: assumes that there is one sentence describing the
relation in a bag and chooses the most correct sentence in each
bag.

¢ CNN+ATT: adopts a sentence-level attention over the sentences
in a bag and thus can down weight noisy sentences in a baé

. imil




Experiment

® Sentence-Level Relation Classification

46

Method Macro F1 | Accuracy
CNN 0.40 0.60
CNN+Max 0.06 0.34
CNN+ATT 0.29 0.56
CNN+RL(ours) 0.42 0.64

imil




Experiment

® The performance of the instance selector

1.0 1.0
0.9. —=— CNN(Selected) —=— CNN+ATT(Selected)
: —«— CNN(Original) 0.9 —%— CNN+ATT(Original)
0.8 1 0.8
c 0.71 0.7
o 2
206 5 06
o o
* 05, 0.5
0.4 - 0.4
0.31 0.3
0-2 T T T 02 T T T T
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4
Recall Recall

£
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Experiment

® The performance of the instance selector

1.0
—=— CNN+RL

0-91 —— CNN+Greedy

0.8 1
0.7 1
0.6 1

recision

% 0.5-
0.4 -

0.3

0.2 . , . ,
0.0 0.1 0.2 0.3 0.4

Recall £\
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Case Study

TEEE]

Tsinghua University

Bag I (Entity Pair: fabrice_santor, france; Relation:/people/person/nationality) CNN+RL | CNN+ATT | CNN+Max
though not without some struggle, federer, the world ’s top-ranked player, advanced to the fourth 1 0.60 0
round with a thrilling, victory over the crafty fabrice_santoro of france, who is ranked 76th. ’

in his quarterfinal , nalbandian overwhelmed unseeded fabrice_santoro of france 1 0.39 1
fabrice_santoro, 33 , of france finally reached the quarterfinals in a major on his 54th attempt by ) 001 0
defeating the 11th-seeded spaniard david ferrer ’

Bag II (Entity Pair: jonathan_littel, france; Relation:/people/person/nationality)

Jonathan_littell, a new york-born writer whose french-language novel about a murderous

and degenerate officer has been the sensation of the french publishing season, on monday 0 0.89 1
became the first american to win france’s most prestigious literary award, the prix goncourt

after a languid intercontinental auction that stretched for more than a week, the american rights

to jonathan_littell’s novel les bienveillantes, which became a publishing sensation in france, 0 0.11 0
have been sold to harpercollins, the publisher confirmed yesterday.

49




Summary

® A new model to extract relations from noisy data.

® Merely with a weak supervision signal from the relation
classifier.

@ The 1dea for instance selection can be generalized to other
tasks that employ noisy data or distant supervision.

® Weak supervision: no annotation on which sentence is
noisy!

£
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A Weakly Supervised Method for

Topic Segmentation and Labeling

in Goal-oriented Dialogues via
Reinforcement Learning

Ryuichi Takanobu, Minlie Huang,

Zhongzhou Zhao, Haiging Chen, et al.

IJCATI 2018



Motivation

@ Customer service dialogues are commonly seen 1n large-scale

web services

® Topic segmentation and labeling 1s a coarse-grained intent

analysis, a key step to dialogue understanding

@ Dialogue structure analysis 1s an important task 1n goal-

oriented dialogue systems

£
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The Problem ..

A: The release date of { MODEL )???

B: ( MODEL ) will be available for pre-order on 19
April and launch on 26.

A: How long can the battery last?

B It’s equipped with a 4,000 mAh battery up to 8 hours

Product-info

“E7( A:  Canluse acoupon?
2 ] B: When entering your payment on the checkout page,
g < click Redeem a coupon below your payment method.
(& B: | Youcan check here for more details;. (URL )....ocnnenneee.
% (A:  OK. Support payment by installments?
i { B: Sure. We provide an interest-free installment option
S | for up to 6 months.

Table 1: An example of customer service dialogues, translated from
Chinese. Utterances in the same color are of the same topic. %m
|

53 L




The Problem ..

Datasets SmartPhone  Clothing
# Topic category 7 10
# Training session 12,315 10,000
# Training utterance 430,462 338,534
# Gold-standard session 300 315
# Gold-standard utterance 10,888 10,962

Table 2: Statistics of the corpus.

How can we do topic labeling on these large-scale

dialogues without much annotation efforts?

« imil




Central Idea

@ Noisy labeled data = learn policies with reward =2 refine

data = learn better policies = refine more data

Prior Noisy
Knowledge Labeling
Noisy Labellng[ ]
Do,V < [ Prior Knowledge]
l Pretrain D,V
/’\ Corrected
. State Representation
Hlerarchlcal | Data
LSTM | Representation
[ " Ne_Refinement_~ -
State V2 Label Policy
Representation ’ Policy Network Correction Training
Network
. Local/global
Learning from weakly annotated data Reward

> UIounorL_
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Model Structure

@ State Representation Network

@ Policy Network

Prior Knowledge State Representation Network Policy Network
Keywords Topics o7 = /'! Segment Wi ) .
installment, receipt,-- ———>  service / ; Utterance IA i 0 D .'
free, gift, bargain,--- . > promotion ! Representation ! CI%?I F @ = Qi1 ..+ Q1 = @ F£ Aj+1

! Sentence Level

SN NN

1
1
I
I
I
il Policy 1, : p(alS | i
I
1
1
1
1
1

1
]
' i
l
| ]
U Noisy Labeling { Word Level | <« | % 1 A 1 X A
i i Refined Labels 1 State i
i i i CX ICK UK BRI ICK ICK X
Utterance X; X5 X3 X4 Xs Xg X7 XgXg i i X1 X5 X3 X4 X5 Xg X7 XgXg 1 S.lﬁ iﬁ .+; ,; ﬁ J+a !
) 1 1
1 . .
Label Y1Y2YaYaYsYsY7YsYo —’\\W_/ %/_J!_- Y1 ¥e s Ya¥s Yo V1 V¥ Y hi.] ;
131424502 . X X; L 111444400 L Xt X1 Xivs !

_______________________________________

Figure 1: Illustration of the model. SRN adopts a hierarchical LSTM to represent utterances and provides state representations to PN. Data
labels are refined to retrain SRN and PN to learn better state representations and policies. The label y and the action a are in the same space.

N
oD
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Model Structure

@ Local topic continuity: the same topic will continue 1n a few

dialogue turns

1
Tint =
nt I —1
® Global topic structure: high content similarity within segments

sign(a;—1 = ay) cos(hy_1,hy)

but low between segments

T'delayed — g E COS hta

wEX X Ew
1

N 1 Z Cos(wk_l’wk> EII%IEI
A Al

57 (Wr—1,wk)EX




Experiment

(a) Topic Segmentation (MAE and WD)

SmartPhone Clothing
Model
MAE WD MAE WD
TextTiling(TT) 13.09 .802 16.32 .948
TT+Embedding  3.59  .564 3.17  .567
STM 437 505 885  .669
NL+HLSTM 825 .632 16.26 .925
Our method 269 415 274 446
(b) Topic Labeling (Accuracy)
Model SmartPhone  Clothing
Keyword Matching 39.8 31.8
NL 514 39.0
NL+LSTM 49.6 35.5
NL+HLSTM 52.6 40.1
Our method 62.2 48.0

58

(a)
# Keywords per topic
Model Y P P
3 6 9
NL 45.0 514 48.0
NL+HLSTM 46.6 526 48.8
Our method 55.3 62.2 58.2
(b)
SubSets KM 1-NN
Utterances 3,503 7,385
NL 78.77 38.4
NL+HLSTM 78.6 40.2
Our method 79.0 54.2
(c)
Segmentation  Labeling
Model Setting
MAE WD Acc
RL + 7t 3.04 449 59.5
RL + Tdelayed 3.89 490 60.4
RL + rjnt + Tdelayed 2.69 415 62.2

J Juuuvuwn



Experiment

@ Training converges well (loss, reward, accuracy, relative data

04 7 \\ —rain
\ —
03 1 . dev
m ~
-
8 02 - N
- \\\
0.1 1 RS
\ P —————
0.0 1 . .

2 4 6 8 10 12 14
lteration
5¢

O 0.60 1
—
5 058

v
&056-

0.54

RCR

0.62

0.3 1

0.2 1

0.1 -

004

Iteration
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Visualization

By Noisy Labeling

Examples

Reference
20 40 60 80 100 120 140 160 180
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By Our RL Models
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Summary

@ Start from noisy labeled data (avoiding expensive full

annotation)

® Instead of removing noisy data, correct the noisy labels

using reinforcement learning

® Weak supervision: what we need is just a set of keywords

and some prior knowledge!

£
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Reinforcement Learning in Searc

® Usually multi-turn interactions

¢ Could be natural sequential decision problems

¢ For instance, search result diversification

@ No direct supervision on which you should do at each step

@ Only implicit feedbacks from user behavior data

¢ Not necessarily as direct supervision
¢ Good as reward signals for RL
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Background

® Multi-scenario Ranking: most large-scale online platforms
or mobile Apps have multiple scenarios

Main-search In-shop Search

llll q:'EH‘?’E}J ? 5 @ 4 62% E]'

o) 7 — i
B=E 3 o
159 dBIRAEEh -m

%ﬁ' l:ll:l ?@E¥M Dove  Dove o< Doe

EDIJ 17| e Ewer M \
— i M.Q - EE 2EEN & S

. imil




Motivation

® Previous methods separately optimized each
ranking strategy 1n each scenario

Learning
to Rank
Rank
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item_1
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Query Main Ranking = Main
&User Search Strategy P! Search
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Motivation

@ Joint Optimization of Multi-scenario Ranking
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Model Overview

® Multi-Agent Recurrent Deterministic Policy Gradient
(MA-RDPG)

Observation

Critic <1

Observation
Reward

v
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|[Message
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Observation
Reward

Environment
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Model Structure

® Multi-Agent Recurrent Deterministic Policy Gradient (MA-
RDPG)

Message hi

Ti tep t-1 I I
imestep t- Timestep t
68 @Agent i1 @Agent it H l] l] I_I\

Message hy_4




Model Structure

® Communication Component: make the agents collaborate
better with each other by sending messages

Message Message Message Message
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Model Structure

@ Private Actor. Each agent has a private actor which receives
local observations and shared messages, and makes 1ts own
actions.

ait _ /,lit (St§ Qit) ~ ,Uit (ht_l,oit;git)

@ Centralized Critic: an action-value function to approximate
the future overall rewards obtained by all the agents

1 2 N
Q(Staat7at7'-°7at 7(/b)

1 2 N
= T —I—Q(St+1aat+1aat+27---:at+1§¢) £
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Training Procedure

® The centralized critic 1s trained using the Bellman equation

L(¢) = Eht_l,ot [(Q(ht—1,0¢,a15¢) — yt)z]
yr = 1 + yO(hy, 0p41, p'**1 (hy, 0141); §)

@ The private actor 1s updated by maximizing the expected total
rewards with respect to the actor’s parameters

](9”) = Eht_l,ot[Q(ht—la Ot d; gb)la:'uit(ht_l,ot;git)]
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Training Procedure

ALGORITHM 1: MA-RDPG

Initialize the parameters 6 = {0, ..., 0N} for the N actor
networks and ¢ for the centralized critic network.

Initialized the replay buffer R

for each training step e do

end

fori=1toMdo

hy = initial message, t = 1
while t < T and o; # terminal do
Select the action a; = p‘_’(h,_l,or) + N; for the
active agent i; with an exploration noise — Generate new episode
Receive reward r; and the new observation 0441
Generate the message hy = LSTM(h;-1,[o¢;a;¢])

t=t+1
end
Store episode {hg,01,a1,r1,h1,02,r2,h3,03,...} inR —>» Update the replay buffer
end
Sample a random minibatch of episodes B from replay | Sample training batch from replay buffer
buffer R

foreach episode in B do

for t = T downto 1do
Update the critic by minimizing the loss:

L(g) = (Q(he—1,01, ar; §) - ye)?, where Update thc.e pararpfeters of:
yr =11 + yO(he,0p 41, "1 (ht, 0041); @) * Centralized Critic
Update the i;-th actor by maximizing the critic: e Private actor

1(01!) = Q(ht-1,0¢, a; ¢)|a=#i’(h1—1,01:9”1 . .
Update the communication component. * Communication ComponentQ
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Application in Search

@ Jointly optimize the ranking strategies in two search
scenarios 1n Taobao

Main
Search
Rank Actor
List
item_1
item_2
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Search Strategy j
item_k
Query .
@ MA-RDPG
item_k
In-shop Ranking =
Search Strategy =
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item_1
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How Training Happens

@ Step 1: Start from a base ranking algorithm
® Step 2: Collect user feedback data with the current ranking system

® Step 3: Train our MA-RDPG algorithm to obtain new ranking

weights (1.e., the action of the agents by deterministic policy)
® Step 4: Apply the new weights to the online ranking systems

® Goto Step 2 until convergence

£
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Application in Search

@ The observations, actions, rewards for the agents:

¢ Observations: the features of each ranking scenarios
* the attributes of the customer (age, gender, purchasing power, etc.)

* the properties of the customer’s clicked items (price, conversion rate,
sales volume, etc.)

* the query type and the scenario index (main or in-shop search)

£
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Application in Search

® The observations, actions, rewards

76

for the agents:

¢ Actions: the weight vector for the

ranking features

¢ Continuous actions, deterministic

policies
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Application in Search

@ The observations, actions, rewards for the agents:

¢ Rewards: user feedback on the presented product list

* if a purchase behavior happens, reward = the price of the bought
product

* if a click happens, reward =1
* if there 1s no purchase nor click, reward = -1

* 1f a user leaves the page without buying any product, reward = —5.

£
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Experiment Results

® GMYV gap evaluated on an online Taobao platform

Relative improvement against EW+EW

TEEE]

Tsinghua University

day EW + L2R| L2R + EW L2R + L2R MA-RDPG
main | in-shop total | main | in-shop total | main | in-shop total | main | in-shop total
1] 0.04% | 1.78% | 0.58% | 5.07% | -1.49% | 3.04% | 5.22% | 0.78% | 3.84% | 5.37% | 2.39% | 4.45%
2| 0.01% | 1.98% | 0.62% | 4.96% | -0.86% | 3.16% | 4.82% | 1.02% | 3.64% | 5.54% | 2.53% | 4.61%
3| 0.08% | 2.11% | 0.71% | 4.82% | -1.39% | 2.89% | 5.02% | 0.89% | 3.74% | 5.29% | 2.83% | 4.53%
4| 0.09% | 1.89% | 0.64% | 5.12% | -1.07% | 3.20% | 5.19% | 0.52% | 3.74% | 5.60% | 2.67% | 4.69%
51-0.08% | 2.24% | 0.64% | 4.88% | -1.15% | 3.01% | 4.77% | 0.93% | 3.58% | 5.29% | 2.50% | 4.43%
6| 0.14% | 2.23% | 0.79% | 5.07% | -0.94% | 3.21% | 4.86% | 0.82% | 3.61% | 5.59% | 2.37% | 4.59%
71-0.06% | 2.12% | 0.62% | 5.21% | -1.32% | 3.19% | 5.14% | 1.16% | 3.91% | 5.30% | 2.69% | 4.49%
avg. | 0.03% | 2.05% | 0.66% | 5.02% | -1.17% | 3.09% | 5.00% | 0.87% | 3.72% | 5.43% | 2.57% | 4.54%
Recent results online: MA-RDPG gains 3% improvement against L2ZR+L2R
£
oLA"\o
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Experiment Results

® Learning process of the loss function, critic value and GMV
gap
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Summary

® Multi-scenario ranking (or optimization) as a fully
cooperative, partially observable, multi-agent sequential
decision problem

® Multi-agent, deterministic policy RL to enable multiple
agents to work collaboratively to optimize the overall
performance.

@ Significant gain in improving ranking systems in real online
service (Taobao)

® Learning from user feedback, through interactions!

. imil




Messages and Lessons

® Keys to the success of RL in NLP

81

¢ Formulate a task as a natural sequential decision problem where
current decisions affect future ones!

¢ Remember the nature of trial-and-error when you have no
access to full, strong supervision.

¢ Encode the expertise or prior knowledge of the task in rewards.

¢ Applicable in many weak supervision settings.

£
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Messages and Lessons

® Lessons we learned

82

¢ A warm-start is important, using pre-training (due to too many
spurious solutions and too sparse rewards)

¢ Very marginal improvements to full supervision settings

¢ Very marginal improvements for large action space problems
(e.g., language generation)
¢ Patient enough to the training tricks and tunings
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Thanks for Your Attention

® Minlie Huang, Tsinghua University

® athuang@tsinghua.edu.cn

@ http://coai.cs.tsinghua.edu.cn/hml
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