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About Me (Minlie Huang)

� Associate Professor, CS Depart., Tsinghua University

� Homepage: http://aihuang.org/p

� Research Interests
u Deep learning
u Deep reinforcement learning
u Generalized QA: QA, Read Comprehension, Story Comprehension
u Dialogue systems: task-oriented, open-domain
u Language generation
u Sentiment/Emotion understanding
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Our Recent Works on RL

� Brief Introduction to reinforcement learning (RL)

� Learning Structured Representation with RL (AAAI 2018)
u Policy gradient

� Relation Classification from Noisy Data (AAAI 2018)
u 入选PaperWeekly 2017年度最值得读的10篇NLP论文
u Policy gradient

� Weakly Supervised Topic Labeling in Customer Dialogues (IJCAI 2018)
u Policy gradient

� Learning to Collaborate: Joint Ranking Optimization (WWW 2018)

u Multi-agent reinforcement learning; deterministic policy; actor-critic



4

Reinforcement Learning

Agent

Environment http://www0.cs.ucl.ac.uk/staff/d.silver/web/Tea
ching_files/intro_RL.pdf

At	each	step	t:
• The agent receives a state St from the

environment
• The agent executes	action At based on

the received state
• The agent receives	scalar	reward Rt

from the environment
• The environment transfers into a new

state St+1
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Maze Example

States: Agent’s location
Actions: N, E, S, W
Rewards:
• 100 if reaching the goal
• -100 if reaching the dead	end
• -1 per time-step

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Tea
ching_files/intro_RL.pdf
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Deep Reinforcement Learning

Deep learning to represent states, actions,
or policy functions

Robotics, control Self-driving

Language interaction System operating
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Reinforcement Learning

� Markov Decision Process 

From ICML Tutorial by Sergey	Levine	and	Chelsea	Finn	
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Reinforcement Learning

From ICML Tutorial by Sergey	Levine	and	Chelsea	Finn	
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Reinforcement Learning

From ICML Tutorial by Sergey	Levine	and	Chelsea	Finn	
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Reinforcement Learning

From ICML Tutorial by Sergey	Levine	and	Chelsea	Finn	
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Policy Gradient
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Policy Gradient
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Reinforcement Learning

� Difference to supervised learning

� Sequential decision: current decision affects future decision

� Trial-and-error

� Explore (new possibilities) and exploit (with the current policy)

� Future reward: maximizing the future rewards instead of just the
intermediate rewards
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Difference to Supervised Learning

� Supervised learning: given a set of samples (xi,yi),

estimate f: XàY
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� You know what a true goal is, but do not know how to

achieve that goal

� Through interactions with environment (trial-and-error)

� Many possible solutions (policies), which is optimal?

Difference to Supervised Learning
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Applying RL in NLP

� Challenges
u Sparse reward (few feedback when making decisions)
u Difficulty in reward function design
u High-dimensional action space
u High variance in training RL algorithms

� Strengthens of RL
u Weak supervision without explicit annotations
u Trial-and-error: probabilistic exploring
u Accumulative rewards: encoding expert/prior knowledge in

rewards
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Learning Structured 
Representation for Text 

Classification
via Reinforcement Learning

Tianyang Zhang, Minlie Huang, Li Zhao

AAAI 2018
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Background

The	actors	are	fantastic .	They	are	what	
makes	it	worth the	trip	to	the	theater	.

Sentence Representation

Classifier

� Non-structure model
u CNN, RNN, LSTM
u Bag-of-words models (BM、AE)

� Using parsing structures
u Recursive autoencoders
u Tree-structured LSTM

� Auto-learned structure
u Binary tree, overly deep
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The Problem …

� How can we identify task-relevant structures without

explicit annotations on structure?

� Challenges
u NO explicit annotations on structure-weak supervision
u Trial-and-error, measured by delayed rewards
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Model Structure

Policy Network(PNet) Structured Representation Model
Classification
Network(CNet)

� Policy Network: 
u Samples an action at each state

u Two models: Information Distilled LSTM, Hierarchically Structured LSTM

� Structured Representation Model: transfer action sequence to representation

� Classification Network: provide reward signals
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Policy Network (PNet)

� State 𝒔𝒕
u Encodes the current input and previous contexts
u Provided by different representation models

� Action 𝒂𝒕
u {Retain, Delete} in Information Distilled LSTM
u {Inside, End} in Hierarchically Structured LSTM
u 𝜋 𝑎& 𝑠&; Θ = 𝜎(𝑊 ∗ 𝑠& + 𝑏)

� Reward 𝒓𝒕
u Calculated from the classification likelihood
u A factor considering the tendency of structure selection
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Policy Network (PNet)

� Maximize the expected reward:

� Update the policy network with policy gradient:
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Classification Network (CNet)

� Cnet is trained via cross entropy (loss function):
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Information Distilled LSTM (ID-LSTM)

� Distill the most important words and remove irrelevant 
words

� Sentence representation: the last hidden state of ID-LSTM
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Information Distilled LSTM (ID-LSTM)

� Action: {Retain, Delete}
� States:

� Rewards:

the	proportion	of	the	number	of	deleted	
words	to	the	sentence	length
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Hierarchically Structured LSTM(HS-LSTM)

� Build a structured representation by discovering hierarchical 
structures in a sentence

� Two-level structure: 
u Word-level LSTM + phrase-level LSTM
u Sentence representation: the last hidden state of phrase-level 

LSTM
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Hierarchically Structured LSTM(HS-LSTM)

� Action: {Inside, End} 

� States:

� Rewards:

Word-level LSTM

Phrase-level LSTM

a	unimodal	function	of	the	number	of	phrases	(a	good	phrase	
structure	should	contain	neither	too	many	nor	too	few	phrases)
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Experiment

� Dataset
u MR: movie reviews (Pang and Lee 2005)
u SST: Stanford Sentiment Treebank, a public sentiment analysis 

dataset with five classes (Socher et al. 2013)
u Subj: subjective or objective sentence for subjectivity

classification (Pang and Lee 2004)
u AG: AG’s news corpus, a large topic classification dataset 

constructed by (Zhang, Zhao, and LeCun 2015)
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Experiment

� Classification Results

� Examples by ID-LSTM/HS-LSTM
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Results of ID-LSTM
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Results of HS-LSTM
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Summary

� A reinforcement learning method which learns sentence 
representation by discovering task-relevant structure.

� Two representation models: ID-LSTM and HS-LSTM

� State-of-the-art performance & interesting task-relevant 
structures

� No direct supervision on structure à trial-and-error!
u Policy gradient
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Reinforcement Learning for 
Relation Classification from 

Noisy Data

Jun Feng, Minlie Huang, Li Zhao,

Yang Yang, Xiaoyan Zhu

AAAI 2018
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Introduction to Relation Classification

� Relation Classification (or extraction)

� Distant Supervision (noisy labeling problem)

[Obama]e1 was	born	in	the	[United	States]e2.

Relation: BornIn

[Barack	Obama]e1 is	the	44th	President	of the	[United	States]e2.

Relation: BornIn

Triple in knowledge base:<Barack_Obama, BornIn, United_States>
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The Problem …

� Previous studies adopt multi-instance learning to consider 
the instance noises

Bag-Level

Barack_Obama, United_States

Obama was born in the United States.

Barack Obama is the 44th President of the United States
BornIn

Relation
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Motivation

� Two limitations of previous works:
u Unable to handle the sentence-level prediction

u Unable to deal with all noisy sentences (all are wrong)

Barack_Obama, United_States

Obama was born in the United States.

Barack Obama is the 44th President of the United States
StudyIn

Relation

Barack_Obama, United_States

Obama was born in the United States.

Barack Obama is the 44th President of the United States
BornIn

EmployedBy

Sentence-Level

Relation

How can we remove noisy data to improve relation
extraction without explicit annotations?



37

Model Structure

� The model consists of an instance selector and a relation 
classifier

� Challenges:
u Instance selector has no explicit knowledge about which 

sentences are labeled incorrectly
• Weak supervision -> delayed reward
• Trail-and-error search

u How to train the two modules jointly

Original
Data

Cleansed
Data

Instance
Selector

Relation
Classifier

Reinforcement
Learning
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Model Structure
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The Logic Why it Works

� Start from noisy data to pretrain relation classifier and instance

selector

� Remove noisy data

� Train better classifier to obtain

better reward estimator

� Train better policy with more

accurate reward estimator

� Remove noisy data more accurately
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Instance Selector

� Instance selection as a reinforcement learning problem
u State: F(si) the current sentence, the already selected sentences, 

and the entity pair
u Action: {0,1}, select the current sentence or not

u Reward: the total likelihood of the sent. bag
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Instance Selector

� Optimization:
u Maximize the expected total rewards

u Update parameters with the REINFORCE algorithm
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Relation Classifier

� A CNN architecture to classify relations

� Optimization: cross-entropy as the objective function
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Training Procedure

� Overall Training Procedure
1. Pre-train the CNN model of the relation classifier
2. Pre-train the policy network of the instance selector with the

CNN model fixed
3. Jointly train the CNN model and the policy network
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Experiment

� Dataset
u NYT and developed by (Riedel, Yao, and McCallum 2010)

� Baselines
u CNN: is a sentence-level classification model. It does not 

consider the noisy labeling problem.
u CNN+Max: assumes that there is one sentence describing the

relation in a bag and chooses the most correct sentence in each 
bag.

u CNN+ATT: adopts a sentence-level attention over the sentences 
in a bag and thus can down weight noisy sentences in a bag.
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Experiment

� Sentence-Level Relation Classification



46

Experiment

� The performance of the instance selector
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Experiment

� The performance of the instance selector
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Case Study
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Summary

� A new model to extract relations from noisy data.
� Merely with a weak supervision signal from the relation 

classifier.
� The idea for instance selection can be generalized to other 

tasks that employ noisy data or distant supervision.
� Weak supervision: no annotation on which sentence is

noisy!
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Learning to Collaborate: Multi-
Scenario Ranking via Multi-
Agent Reinforcement Learning

Jun Feng, Heng Li, Minlie Huang, Shichen

Liu, Wenwu Ou, Zhirong Wang and Xiaoyan Zhu

WWW 2018
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Background

� Examples of multi-agent reinforcement learning problems
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Background

� Multi-Agent Reinforcement Learning
uN agents A1, A2,…, AN interact in a common environment
u The state is global
u At time step t, each agent has:

• its own observation 𝑜&4

• its own action 𝑎&4

• its own reward
𝑟4& = 𝑟(𝑠&, 𝑎&4)

Agent1 Agent2

Environment

ActionObservation
Reward

Observation
RewardAction
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Background

� Types of multi-agent reinforcement learning
u Fully cooperative

• All the agents have the same goal, maximizing the same objective
function

u Fully competitive
• Two agents have opposite goals
• Maximize one’s benefit under the worst-case assumption that the 

opponent will always endeavor to minimize it

u Mixed
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Background

� Ranking is a fundamental and widely studied problem
u Search, advertising and recommendation



55

Background

� Multi-scenario Ranking: most large-scale online platforms 
or mobile Apps have multiple scenarios
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Motivation

� Previous methods separately optimized each individual 
ranking strategy in each scenario
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Motivation

� Separately optimization has two main limitations:
u Lack of collaboration between scenarios:

maximizing one’s own objective but ignoring the goals of other 
strategies leads to a suboptimal overall performance
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Motivation

� Separately optimization has two main limitations:
u Lack of collaboration between scenarios
u Inability to model the correlation between scenarios: 

optimization in one scenario only uses its own user data but 
ignores the context in other scenarios.

Separately

Joint
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Problem Description

� Joint Optimization of Multi-scenario Ranking
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Problem Description

� Joint Optimization of Multi-scenario Ranking
u Multiple ranking strategies for different scenarios in a system

u Users sequentially interact with the system, and the scenarios 
sequentially interact with the users

u Ranking strategies for different scenarios maximize a shared 
metric

u Each ranking strategies receive the information of its own 
scenario
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Problem Description

� Joint Optimization of Multi-scenario Ranking
u Multiple ranking strategies for different scenarios in a system

u Users sequentially interact with the system, and the scenarios 
sequentially interact with the users

u Ranking strategies for different scenarios maximize a shared 
metric

u Each ranking strategies receive the information of its own 
scenario

Multi-Agent

Sequential	Decision

Fully	Cooperative

Partially	Observable
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Problem Description

� Joint Optimization of Multi-scenario Ranking
u Multiple ranking strategies for different scenarios in a system

u Users sequentially interact with the system, and the scenarios 
sequentially interact with the users

u Ranking strategies for different scenarios maximize a shared 
metric

u Each ranking strategies receive the information of its own 
scenario

Multi-Agent

Sequential	Decision

Fully	Cooperative

Partially	Observable

a	fully	cooperative,	partially	observable,	multi-agent
sequential	decision problem
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Model Overview

� Multi-Agent Recurrent Deterministic Policy Gradient 
(MA-RDPG)
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Model Overview

� Multi-Agent Recurrent Deterministic Policy Gradient 
(MA-RDPG)
uCommunication Component

• partial observation, fully cooperative
uPrivate Actor

• partial observation
uCentralized Critic

• fully cooperative
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Model Structure

� Multi-Agent Recurrent Deterministic Policy Gradient 
(MA-RDPG)
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Model Structure

� Communication Component: make the agents collaborate 
better with each other by sending messages
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Model Structure

� Private Actor. Each agent has a private actor which receives 
local observations and shared messages, and makes its own 
actions.

� Centralized Critic: an action-value function to approximate 
the future overall rewards obtained by all the agents
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Training Procedure

� The centralized critic is trained using the Bellman equation

� The private actor is updated by maximizing the expected total
rewards with respect to the actor’s parameters
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Training Procedure

Generate new episode

Update the replay buffer

Sample training batch from replay buffer

Update the parameters of:
• Centralized Critic
• Private actor
• Communication Component
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Application in Search

� We apply MA-RDPG to jointly optimize the ranking 
strategies in two search scenarios in Taobao

Main Search In-shop Search
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Application in Search

� We apply MA-RDPG to jointly optimize the ranking 
strategies in two search scenarios in Taobao
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How Training Happens

� Step 1: Start from a base ranking algorithm

� Step 2: Collect user feedback data with the current ranking system

� Step 3: Train our MA-RDPG algorithm to obtain new ranking

weights (i.e., the action of the agents by deterministic policy)

� Step 4: Apply the new weights to the online ranking systems

� Goto Step 2 until convergence
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Application in Search

� The observations, actions, rewards for the agents:
u Observations: the features of each ranking scenarios

• the attributes of the customer (age, gender, purchasing power, etc.)
• the properties of the customer’s clicked items (price, conversion rate,

sales volume, etc.)
• the query type and the scenario index (main or in-shop search)
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Application in Search

� The observations, actions, rewards

for the agents:
u Actions: the weight vector for the

ranking features
u Continuous actions, deterministic

policies
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Application in Search

� The observations, actions, rewards for the agents:
u Rewards: user feedback on the presented product list

• if a purchase behavior happens, reward = the price of the bought 
product

• if a click happens, reward = 1
• if there is no purchase nor click, reward = -1
• if a user leaves the page without buying any product, reward = −5.
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Experiment Results

� We deploy our MA-RDPG online in Taobao

� We choose three baselines
u EW (Empirical Weight) + L2R (Learning to rank, a strong 

model previously used by Taobao)
u L2R+EW
u L2R+L2R
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Experiment Results

� GMV gap evaluated on an online Taobao platform

Relative improvement against EW+EW

Recent results online: MA-RDPG gains 3% improvement against L2R+L2R
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Experiment Results

� Learning process of the loss function, critic value and GMV
gap
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Experiment Results

� Case Study

Main Search Results In-shop Search Results

L2R+L2R MA-DPRG L2R+L2R MA-DPRG
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Summary

� Multi-scenario ranking (or optimization) as a fully 
cooperative, partially observable, multi-agent sequential
decision problem

� Multi-agent, deterministic policy RL to enable multiple 
agents to work collaboratively to optimize the overall 
performance.

� Significant gain in improving ranking systems in real online
service (Taobao)

� Learning from user feedback, through interactions!
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Messages and Lessons

� Keys to the success of RL in NLP
u Formulate a task as a natural sequential decision problem where

current decisions affect future ones!
u Remember the nature of trial-and-error when you have no

access to full, strong supervision.
u Encode the expertise or prior knowledge of the task in rewards.
u Applicable in many weak supervision settings.
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Messages and Lessons

� Lessons we learned
u A warm-start is important, using pre-training (due to too many

spurious solutions and too sparse rewards)
u Very marginal improvements to full supervision settings
u Very marginal improvements for large action space problems

(e.g., language generation)
u Patient enough to the training tricks and tunings
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Thanks for attention!
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Language Generation:
Dialogue as an Example

Minlie Huang

Tsinghua University
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Thanks for Your Attention

� Minlie Huang, Tsinghua University

� aihuang@tsinghua.edu.cn

� http://aihuang.org/p

� Recruiting post-doctors!


