

## Reinforcement Learning in Natural Language Processing

## Minlie Huang (黄民烈)

Dept. of Computer Science, Tsinghua University

aihuang@tsinghua.edu.cn

http://aihuang.org/p





## About Me (Minlie Huang)

- Associate Professor, CS Depart., Tsinghua University
- Homepage: <a href="http://aihuang.org/p">http://aihuang.org/p</a>
- Research Interests
  - Deep learning
  - Deep reinforcement learning
  - ◆ Generalized QA: QA, Read Comprehension, Story Comprehension
  - ♦ Dialogue systems: task-oriented, open-domain
  - Language generation
  - Sentiment/Emotion understanding





#### Our Recent Works on RL

- Brief Introduction to reinforcement learning (RL)
- Learning Structured Representation with RL (AAAI 2018)
  - Policy gradient
- Relation Classification from Noisy Data (AAAI 2018)
  - ◆ 入选PaperWeekly 2017年度最值得读的10篇NLP论文
  - Policy gradient
- Weakly Supervised Topic Labeling in Customer Dialogues (IJCAI 2018)
  - Policy gradient
- Learning to Collaborate: Joint Ranking Optimization (WWW 2018)
  - Multi-agent reinforcement learning; deterministic policy; actor-critic







**Environment** 

#### At each step t:

- The agent receives a **state** S<sub>t</sub> from the environment
- The agent executes action A<sub>t</sub> based on the received state
- The agent receives scalar reward R<sub>t</sub> from the environment
- The environment transfers into a new state  $S_{t+1}$

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Tea ching\_files/intro\_RL.pdf





## Maze Example



**States**: Agent's location

Actions: N, E, S, W

**Rewards**:

• 100 if reaching the goal

• -100 if reaching the dead end

• -1 per time-step



## Deep Reinforcement Learning



Deep learning to represent states, actions, or policy functions



Robotics, control





Self-driving



System operating





#### Markov Decision Process

 $\mathbf{s}_t$  – state

 $\mathbf{o}_t$  – observation

 $\mathbf{a}_t$  – action

 $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$  – policy

 $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$  – policy (fully observed)







$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\pi_{\theta}(\tau)$$
Markov chain

 $p_{ heta}(\mathbf{s}_t, \mathbf{a}_t)$  state-action marginal

 $p_{\theta}(\mathbf{s}, \mathbf{a})$  stationary distribution

$$\theta^* = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})]$$

infinite horizon case





$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\pi_{\theta}(\tau)$$
Markov chain

 $p_{ heta}(\mathbf{s}_t, \mathbf{a}_t)$  state-action marginal

 $p_{\theta}(\mathbf{s}, \mathbf{a})$  stationary distribution

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

finite horizon case











## Policy Gradient

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta}(\tau)r(\tau)d\tau$$

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} \pi_{\theta}(\tau)} r(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau$$

$$\pi_{\theta}(\tau)\nabla_{\theta}\log \pi_{\theta}(\tau) = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta}\pi_{\theta}(\tau)$$



## Policy Gradient

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} \pi_{\theta}(\tau)} r(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau$$

$$= E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[ \left( \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left( \sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$



Difference to supervised learning

- Sequential decision: current decision affects future decision
- Trial-and-error
- Explore (new possibilities) and exploit (with the current policy)

• Future reward: maximizing the future rewards instead of just the intermediate rewards





### Difference to Supervised Learning

• Supervised learning: given a set of samples  $(x_i, y_i)$ , estimate  $f: X \rightarrow Y$ 







## Difference to Supervised Learning

- You know what a true goal is, but do not know how to achieve that goal
- Through interactions with environment (trial-and-error)
- Many possible solutions (policies), which is optimal?





## Applying RL in NLP

#### Challenges

- Sparse reward (few feedback when making decisions)
- Difficulty in reward function design
- High-dimensional action space
- ♦ High variance in training RL algorithms

#### Strengthens of RL

- ◆ Weak supervision without explicit annotations
- ◆ **Trial-and-error**: probabilistic exploring
- ◆ **Accumulative rewards**: encoding expert/prior knowledge in rewards



# Learning Structured Representation for Text Classification via Reinforcement Learning

Tianyang Zhang, Minlie Huang, Li Zhao

**AAAI 2018** 



## Background

#### Non-structure model

- ◆ CNN, RNN, LSTM
- ◆ Bag-of-words models (BM、AE)

#### Using parsing structures

- Recursive autoencoders
- ◆ Tree-structured LSTM

#### Auto-learned structure

Binary tree, overly deep







#### The Problem ...

## • How can we identify task-relevant structures without explicit annotations on structure?

| Origin text    | Cho continues her exploration of the outer limits of raunch with considerable brio.                   |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| <b>ID-LSTM</b> | Cho continues her exploration of the outer limits of raunch with considerable brio.                   |  |  |  |
| <b>HS-LSTM</b> | Cho   continues her exploration   of the outer limits of raunch   with considerable   brio.           |  |  |  |
| Origin text    | Much smarter and more attentive than it first sets out to be.                                         |  |  |  |
| <b>ID-LSTM</b> | Much smarter and more attentive than it first sets out to be.                                         |  |  |  |
| HS-LSTM        | Much smarter and more attentive than it first sets out to be.                                         |  |  |  |
| Origin text    | Offers an interesting look at the rapidly changing face of Beijing.                                   |  |  |  |
| <b>ID-LSTM</b> | Offers <del>an</del> interesting look <del>at the</del> rapidly changing face <del>of</del> Beijing . |  |  |  |
| HS-LSTM        | Offers an interesting look at the rapidly changing face of Beijing.                                   |  |  |  |

- Challenges
  - ◆ NO explicit annotations on structure-weak supervision
  - ◆ Trial-and-error, measured by delayed rewards





#### Model Structure

#### **Policy Network(PNet)**

#### **Structured Representation Model**

#### Classification Network(CNet)



- Policy Network:
  - Samples an action at each state
  - ◆ Two models: Information Distilled LSTM, Hierarchically Structured LSTM
- Structured Representation Model: transfer action sequence to representation
- Classification Network: provide reward signals



## Policy Network (PNet)

#### $\bullet$ State $s_t$

- Encodes the current input and previous contexts
- Provided by different representation models

#### $\bullet$ Action $a_t$

- **♦** {Retain, Delete} in Information Distilled LSTM
- **♦** {Inside, End} in Hierarchically Structured LSTM

#### $\bullet$ Reward $r_t$

- Calculated from the classification likelihood
- ◆ A factor considering the tendency of structure selection





## Policy Network (PNet)

• Maximize the expected reward:

$$J(\Theta) = \mathbb{E}_{(\mathbf{s_t}, a_t) \sim P_{\Theta}(\mathbf{s_t}, a_t)} r(\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L)$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} P_{\Theta}(\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L) R_L$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} p(\mathbf{s_1}) \prod_t \pi_{\Theta}(a_t | \mathbf{s_t}) p(\mathbf{s_{t+1}} | \mathbf{s_t}, a_t) R_L$$

$$= \sum_{\mathbf{s_1} a_1 \cdots \mathbf{s_L} a_L} \prod_t \pi_{\Theta}(a_t | \mathbf{s_t}) R_L.$$

• Update the policy network with policy gradient:

$$\nabla_{\Theta} J(\Theta) = \sum_{t=1}^{L} R_L \nabla_{\Theta} \log \pi_{\Theta}(a_t | \mathbf{s_t})$$



## Classification Network (CNet)

• Cnet is trained via cross entropy (loss function):

$$P(y|X) = softmax(\mathbf{W_sh_L} + \mathbf{b_s}),$$

$$\mathcal{L} = \sum_{X \in \mathcal{D}} - \sum_{y=1}^{K} \hat{p}(y, X) \log P(y|X)$$





- Distill the most important words and remove irrelevant words
- Sentence representation: the last hidden state of ID-LSTM

$$P(y|X) = softmax(\mathbf{W_sh_L} + \mathbf{b_s})$$









States:

$$\mathbf{s_t} = \mathbf{c_{t-1}} \oplus \mathbf{h_{t-1}} \oplus \mathbf{x_t},$$

$$\mathbf{c_t}, \mathbf{h_t} = \begin{cases} \mathbf{c_{t-1}}, \mathbf{h_{t-1}}, & a_t = Delete \\ \Phi(\mathbf{c_{t-1}}, \mathbf{h_{t-1}}, \mathbf{x_t}), & a_t = Retain \end{cases}$$

• Rewards:

$$R_L = \log P(c_g|X) + \gamma L'/L_1$$

the proportion of the number of deleted words to the sentence length





- Build a structured representation by discovering hierarchical structures in a sentence
- Two-level structure:
  - ◆ Word-level LSTM + phrase-level LSTM
  - ◆ Sentence representation: the last hidden state of phrase-level LSTM





## Hierarchically Structured LSTM(HS-LSTM)

• Action: {Inside, End}

| $\overline{a_{t-1}}$ | $a_t$  | Structure Selection            |
|----------------------|--------|--------------------------------|
| Inside               | Inside | A phrase continues at $x_t$ .  |
| Inside               | End    | A old phrase ends at $x_t$ .   |
| End                  | Inside | A new phrase begins at $x_t$ . |
| End                  | End    | $x_t$ is a single-word phrase. |

 $\bullet$  States:  $\mathbf{s_t} = \mathbf{c_{t-1}^p} \oplus \mathbf{h_{t-1}^p} \oplus \mathbf{c_t^w} \oplus \mathbf{h_t^w}$ 

$$\text{Word-level LSTM} \quad \mathbf{c_t^w}, \mathbf{h_t^w} = \left\{ \begin{array}{ll} \Phi^w(\mathbf{0}, \mathbf{0}, \mathbf{x_t}), & a_{t-1} = End \\ \Phi^w(\mathbf{c_{t-1}^w}, \mathbf{h_{t-1}^w}, \mathbf{x_t}), & a_{t-1} = Inside \end{array} \right.$$

$$\text{Phrase-level LSTM} \ \ \mathbf{c_t^p}, \mathbf{h_t^p} = \left\{ \begin{array}{ll} \Phi^p(\mathbf{c_{t-1}^p}, \mathbf{h_{t-1}^p}, \mathbf{h_t^w}), & a_t = End \\ \mathbf{c_{t-1}^p}, \mathbf{h_{t-1}^p}, & a_t = Inside \end{array} \right.$$

• Rewards:  $R_L = \log P(c_g|X) - \gamma(L'/L + 0.1L/L')$ 

a unimodal function of the number of phrases (a good phrase structure should contain neither too many nor too few phrases)





## Experiment

#### Dataset

- ◆ MR: movie reviews (Pang and Lee 2005)
- ◆ SST: Stanford Sentiment Treebank, a public sentiment analysis dataset with five classes (Socher et al. 2013)
- ◆ Subj: subjective or objective sentence for subjectivity classification (Pang and Lee 2004)
- ◆ AG: AG's news corpus, a large topic classification dataset constructed by (Zhang, Zhao, and LeCun 2015)





## Experiment

Classification Results

| Models         | MR    | SST         | Subj  | AG   |
|----------------|-------|-------------|-------|------|
| LSTM           | 77.4* | 46.4*       | 92.2  | 90.9 |
| biLSTM         | 79.7* | 49.1*       | 92.8  | 91.6 |
| CNN            | 81.5* | 48.0*       | 93.4* | 91.6 |
| RAE            | 76.2* | 47.8        | 92.8  | 90.3 |
| Tree-LSTM      | 80.7* | <b>50.1</b> | 93.2  | 91.8 |
| Self-Attentive | 80.1  | 47.2        | 92.5  | 91.1 |
| ID-LSTM        | 81.6  | 50.0        | 93.5  | 92.2 |
| HS-LSTM        | 82.1  | 49.8        | 93.7  | 92.5 |

## Examples by ID-LSTM/HS-LSTM

| Origin text    | Cho continues her exploration of the outer limits of raunch with considerable brio.         |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| ID-LSTM        | Cho continues her exploration of the outer limits of raunch with considerable brio.         |  |  |  |  |
| <b>HS-LSTM</b> | Cho   continues her exploration   of the outer limits of raunch   with considerable   brio. |  |  |  |  |
| Origin text    | Much smarter and more attentive than it first sets out to be.                               |  |  |  |  |
| <b>ID-LSTM</b> | Much smarter and more attentive than it first sets out to be.                               |  |  |  |  |
| <b>HS-LSTM</b> | Much smarter   and more attentive   than it first sets out to be.                           |  |  |  |  |
| Origin text    | Offers an interesting look at the rapidly changing face of Beijing.                         |  |  |  |  |
| ID-LSTM        | Offers an interesting look at the rapidly changing face of Beijing.                         |  |  |  |  |
| HS-LSTM        | Offers   an interesting look   at the rapidly changing   face of Beijing  .                 |  |  |  |  |



### Results of ID-LSTM

| Dataset | Length | Distilled Length | Removed |
|---------|--------|------------------|---------|
| MR      | 21.25  | 11.57            | 9.68    |
| SST     | 19.16  | 11.71            | 7.45    |
| Subj    | 24.73  | 9.17             | 15.56   |
| AĞ      | 35.12  | 13.05            | 22.07   |

Table 4: The original average length and distilled average length by ID-LSTM in the test set of each dataset.

| Word        | Count | Deleted | Percentage |
|-------------|-------|---------|------------|
| of          | 1,074 | 947     | 88.18%     |
| by          | 161   | 140     | 86.96%     |
| the         | 1,846 | 1558    | 84.40%     |
| 's          | 649   | 538     | 82.90%     |
| but         | 320   | 25      | 7.81%      |
| not         | 146   | 0       | 0.00%      |
| no          | 73    | 0       | 0.00%      |
| good        | 70    | 0       | 0.00%      |
| interesting | 25    | 0       | 0.00%      |





#### Results of HS-LSTM

| Models        | SST-binary | AG's News |
|---------------|------------|-----------|
| RAE           | 85.7       | 90.3      |
| Tree-LSTM     | 87.0       | 91.8      |
| Com-Tree-LSTM | 86.5*      | <u> </u>  |
| Par-HLSTM     | 86.5       | 91.7      |
| HS-LSTM       | 87.8       | 92.5      |

Table 8: Classification accuracy from structured models. The result marked with \* is re-printed from (Yogatama et al. 2017).

| Dataset | Length | #Phrases | #Words per phrase |
|---------|--------|----------|-------------------|
| MR      | 21.25  | 4.59     | 4.63              |
| SST     | 19.16  | 4.76     | 4.03              |
| Subj    | 24.73  | 4.42     | 5.60              |
| AG      | 35.12  | 8.58     | 4.09              |

Table 9: Statistics of structures discovered by HS-LSTM in the test set of each dataset.





## Summary

- A reinforcement learning method which learns sentence representation by discovering task-relevant structure.
- Two representation models: ID-LSTM and HS-LSTM
- State-of-the-art performance & interesting task-relevant structures
- - Policy gradient





## Reinforcement Learning for Relation Classification from Noisy Data

Jun Feng, Minlie Huang, Li Zhao,
Yang Yang, Xiaoyan Zhu

AAAI 2018

#### Introduction to Relation Classification

Relation Classification (or extraction)

[Obama]<sub>e1</sub> was born in the [United States]<sub>e2</sub>.



Relation: BornIn

Distant Supervision (noisy labeling problem)

[Barack Obama]<sub>e1</sub> is the 44th President of the [United States]<sub>e2</sub>.

Triple in knowledge base:<Barack\_Obama, BornIn, United\_States>



Relation: BornIn





#### The Problem ...

 Previous studies adopt multi-instance learning to consider the instance noises



Bag-Level





#### Motivation

- Two limitations of previous works:
  - ◆ Unable to handle the **sentence-level prediction**



How can we remove noisy data to improve relation extraction without explicit annotations?





 The model consists of an instance selector and a relation classifier



- Challenges:
  - ◆ Instance selector has no explicit knowledge about which sentences are labeled incorrectly
    - Weak supervision -> delayed reward
       Trail-and-error search

      Reinforcement
      Learning
  - How to train the two modules jointly











### The Logic Why it Works

- Start from noisy data to pretrain relation classifier and instance selector
- Remove noisy data
- Train better classifier to obtain better reward estimator
- Train better policy with more accurate reward estimator
- Remove noisy data more accurately







### Instance Selector

- Instance selection as a reinforcement learning problem
  - State:  $F(s_i)$  the current sentence, the already selected sentences, and the entity pair
  - $\diamond$  Action:  $\{0,1\}$ , select the current sentence or not

$$\pi_{\Theta}(s_i, a_i) = P_{\Theta}(a_i | s_i)$$

$$= a_i \sigma(\mathbf{W} * \mathbf{F}(s_i) + \mathbf{b})$$

$$+ (1 - a_i)(1 - \sigma(\mathbf{W} * \mathbf{F}(s_i) + \mathbf{b}))$$

◆ **Reward:** the total likelihood of the sent. bag

$$r(s_i|B) = \begin{cases} 0 & i < |B| + 1\\ \frac{1}{|\hat{B}|} \sum_{x_j \in \hat{B}} \log p(r|x_j) & i = |B| + 1 \end{cases}$$





### Instance Selector

- Optimization:
  - ◆ Maximize the expected total rewards

$$J(\Theta) = V_{\Theta}(s_1|B)$$

$$= E_{s_1,a_1,s_2,...,s_i,a_i,s_{i+1}...} \left[ \sum_{i=0}^{|B|+1} r(s_i|B) \right]$$

◆ Update parameters with the **REINFORCE** algorithm

$$\Theta \leftarrow \Theta + \alpha \sum_{i=1}^{|B|} v_i \nabla_{\Theta} \log \pi_{\Theta}(s_i, a_i)$$





### Relation Classifier

A CNN architecture to classify relations

$$\mathbf{L} = \text{CNN}(\mathbf{x})$$

$$p(r|x; \mathbf{\Phi}) = softmax(\mathbf{W}_r * tanh(\mathbf{L}) + \mathbf{b}_r)$$

Optimization: cross-entropy as the objective function

$$\mathcal{J}(\Phi) = -\frac{1}{|\hat{X}|} \sum_{i=1}^{|\hat{X}|} \log p(r_i|x_i; \Phi)$$





### Training Procedure

- Overall Training Procedure
  - 1. Pre-train the CNN model of the relation classifier
  - 2. Pre-train the policy network of the instance selector with the CNN model fixed
  - 3. Jointly train the CNN model and the policy network





#### Dataset

◆ NYT and developed by (Riedel, Yao, and McCallum 2010)

#### Baselines

- ◆ CNN: is a sentence-level classification model. It does not consider the noisy labeling problem.
- ◆ CNN+Max: assumes that there is one sentence describing the relation in a bag and chooses the most correct sentence in each bag.
- ◆ CNN+ATT: adopts a sentence-level attention over the sentences in a bag and thus can down weight noisy sentences in a bag.



Sentence-Level Relation Classification

| Method       | Macro $F_1$ | Accuracy |
|--------------|-------------|----------|
| CNN          | 0.40        | 0.60     |
| CNN+Max      | 0.06        | 0.34     |
| CNN+ATT      | 0.29        | 0.56     |
| CNN+RL(ours) | 0.42        | 0.64     |





### • The performance of the instance selector









• The performance of the instance selector







# Case Study

| Bag I (Entity Pair: fabrice_santor, france; Relation:/people/person/nationality)                                                                                                                                                                                                             | CNN+RL | CNN+ATT | CNN+Max |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|
| though not without some struggle, federer, the world 's top-ranked player, advanced to the fourth round with a thrilling, victory over the crafty <b>fabrice_santoro</b> of <b>france</b> , who is ranked 76th.                                                                              | 1      | 0.60    | 0       |
| in his quarterfinal, nalbandian overwhelmed unseeded <b>fabrice_santoro</b> of <b>france</b>                                                                                                                                                                                                 | 1      | 0.39    | 1       |
| <b>fabrice_santoro</b> , 33, of <b>france</b> finally reached the quarterfinals in a major on his 54th attempt by defeating the 11th-seeded spaniard david ferrer                                                                                                                            |        | 0.01    | 0       |
| Bag II (Entity Pair: jonathan_littel, france; Relation:/people/person/nationality)                                                                                                                                                                                                           |        |         |         |
| <b>jonathan_littell</b> , a new york-born writer whose french-language novel about a murderous and degenerate officer has been the sensation of the french publishing season, on monday became the first american to win <b>france</b> 's most prestigious literary award, the prix goncourt | 0      | 0.89    | 1       |
| after a languid intercontinental auction that stretched for more than a week, the american rights to <b>jonathan_littell</b> 's novel les bienveillantes, which became a publishing sensation in <b>france</b> , have been sold to harpercollins, the publisher confirmed yesterday.         | 0      | 0.11    | 0       |





### Summary

- A new model to extract relations from noisy data.
- Merely with a weak supervision signal from the relation classifier.
- The idea for **instance selection** can be generalized to other tasks that employ noisy data or distant supervision.
- Weak supervision: no annotation on which sentence is noisy!





## Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning

Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang and Xiaoyan Zhu

WWW 2018



• Examples of multi-agent reinforcement learning problems











- Multi-Agent Reinforcement Learning
  - $\bullet$  N agents  $A^1$ ,  $A^2$ , ...,  $A^N$  interact in a common environment
  - lacktriangle The state  $s_t$  is global
  - ◆ At time step t, each agent has:
    - its own observation  $o_t^i$
    - its own action  $a_t^i$
    - its own reward  $r_i^t = r(s_t, a_t^i)$





- Types of multi-agent reinforcement learning
  - Fully cooperative
    - All the agents have the same goal, maximizing the same objective function
  - Fully competitive
    - Two agents have opposite goals
    - Maximize one's benefit under the worst-case assumption that the opponent will always endeavor to minimize it
  - Mixed





- Ranking is a fundamental and widely studied problem
  - ◆ Search, advertising and recommendation







 Multi-scenario Ranking: most large-scale online platforms or mobile Apps have multiple scenarios









### Motivation

**56** 

 Previous methods separately optimized each individual ranking strategy in each scenario





### Motivation

- Separately optimization has two main limitations:
  - ◆ Lack of collaboration between scenarios: maximizing one's own objective but ignoring the goals of other strategies leads to a suboptimal overall performance





### Motivation

- Separately optimization has two main limitations:
  - **♦** Lack of collaboration between scenarios
  - ◆ Inability to model the correlation between scenarios: optimization in one scenario only uses its own user data but ignores the context in other scenarios.





Joint Optimization of Multi-scenario Ranking





- Joint Optimization of Multi-scenario Ranking
  - ◆ Multiple ranking strategies for different scenarios in a system
  - Users sequentially interact with the system, and the scenarios sequentially interact with the users
  - ◆ Ranking strategies for different scenarios maximize a shared metric
  - Each ranking strategies receive the information of its own scenario





- Joint Optimization of Multi-scenario Ranking
  - ◆ Multiple ranking strategies for different scenarios in a system

#### Multi-Agent

 Users sequentially interact with the system, and the scenarios sequentially interact with the users

#### **Sequential Decision**

◆ Ranking strategies for different scenarios maximize a shared metric

#### **Fully Cooperative**

◆ Each ranking strategies receive the information of its own scenario

Partially Observable





- Joint Optimization of Multi-scenario Ranking
  - ◆ Multiple ranking strategies for different scenarios in a system

#### Multi-Agent

- Users sequentially interact with the system, and the scenarios sequentially interact with the users
- a fully cooperative, partially observable, multi-agent sequential decision problem
- ◆ Each ranking strategies receive the information of its own scenario

Partially Observable





### Model Overview

 Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)







#### Model Overview

- Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)
  - Communication Component
    - partial observation, fully cooperative
  - Private Actor
    - partial observation
  - Centralized Critic
    - fully cooperative





**65** 

 Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG)





 Communication Component: make the agents collaborate better with each other by sending messages



$$h_{t-1} = LSTM(h_{t-2}, [o_{t-1}; a_{t-1}]; \psi)$$





• **Private Actor**. Each agent has a private actor which receives local observations and shared messages, and makes its own actions.

$$a_t^{i_t} = \mu^{i_t}(s_t; \theta^{i_t}) \approx \mu^{i_t}(h_{t-1}, o_t^{i_t}; \theta^{i_t})$$

 Centralized Critic: an action-value function to approximate the future overall rewards obtained by all the agents

$$Q(s_t, a_t^1, a_t^2, \dots, a_t^N; \phi)$$

$$= r_t + Q(s_{t+1}, a_{t+1}^1, a_{t+2}^2, \dots, a_{t+1}^N; \phi)$$





### Training Procedure

• The centralized critic is trained using the Bellman equation

$$L(\phi) = \mathbb{E}_{h_{t-1},o_t}[(Q(h_{t-1},o_t,a_t;\phi) - y_t)^2]$$

$$y_t = r_t + \gamma Q(h_t, o_{t+1}, \mu^{i_{t+1}}(h_t, o_{t+1}); \phi)$$

• The private actor is updated by maximizing the expected total rewards with respect to the actor's parameters

$$J(\theta^{i_t}) = \mathbb{E}_{h_{t-1},o_t}[Q(h_{t-1},o_t,a;\phi)|_{a=\mu^{i_t}(h_{t-1},o_t;\theta^{i_t})}]$$





### Training Procedure

#### ALGORITHM 1: MA-RDPG

Initialize the parameters  $\theta = \{\theta^1, \dots, \theta^N\}$  for the N actor networks and  $\phi$  for the centralized critic network. Initialized the replay buffer R

 $\mathbf{for}\ each\ training\ step\ e\ \mathbf{do}$ 

```
for i = 1 to M do

h_0 = \text{initial message}, t = 1

while t < T and o_t \neq terminal do

Select the action a_t = \mu^{i_t}(h_{t-1}, o_t) + \mathcal{N}_t for the active agent i_t with an exploration noise

Receive reward r_t and the new observation o_{t+1}

Generate the message h_t = LSTM(h_{t-1}, [o_t; a_t])

t = t + 1

end

Store episode (he or as re he or re he of re he of
```

Generate new episode

Store episode  $\{h_0, o_1, a_1, r_1, h_1, o_2, r_2, h_3, o_3, \dots\}$  in  $R \longrightarrow Update$  the replay buffer

end

end

end

Sample a random minibatch of episodes B from replay buffer R

→ Sample training batch from replay buffer

foreach episode in B do

```
for t = T downto 1 do

Update the critic by minimizing the loss:
L(\phi) = (Q(h_{t-1}, o_t, a_t; \phi) - y_t)^2, \text{ where}
y_t = r_t + \gamma Q(h_t, o_{t+1}, \mu^{i_{t+1}}(h_t, o_{t+1}); \phi)
Update the i_t-th actor by maximizing the critic:
J(\theta^{i_t}) = Q(h_{t-1}, o_t, a; \phi)|_{a = \mu^{i_t}(h_{t-1}, o_t; \theta^{i_t})}
Update the communication component.
end
```

**Update the parameters of:** 

- Centralized Critic
- Private actor
- Communication Component



### Application in Search

 We apply MA-RDPG to jointly optimize the ranking strategies in two search scenarios in Taobao



Main Search



In-shop Search





### Application in Search

 We apply MA-RDPG to jointly optimize the ranking strategies in two search scenarios in Taobao





### How Training Happens

- Step 1: Start from a base ranking algorithm
- Step 2: Collect user feedback data with the current ranking system
- Step 3: Train our MA-RDPG algorithm to obtain new ranking weights (i.e., the action of the agents by deterministic policy)
- Step 4: Apply the new weights to the online ranking systems
- Goto Step 2 until convergence





### Application in Search

- The observations, actions, rewards for the agents:
  - ♦ **Observations**: the features of each ranking scenarios
    - the attributes of the customer (age, gender, purchasing power, etc.)
    - the properties of the customer's clicked items (price, conversion rate, sales volume, etc.)
    - the query type and the scenario index (main or in-shop search)





### Application in Search

- The observations, actions, rewards for the agents:
  - ◆ Actions: the weight vector for the ranking features
  - Continuous actions, deterministic policies

$$a_t^{i_t} = \mu^{i_t}(s_t; \theta^{i_t}) \approx \mu^{i_t}(h_{t-1}, o_t^{i_t}; \theta^{i_t})$$





### Application in Search

- The observations, actions, rewards for the agents:
  - ◆ Rewards: user feedback on the presented product list
    - if a purchase behavior happens, reward = the price of the bought product
    - if a click happens, reward = 1
    - if there is no purchase nor click, **reward = -1**
    - if a user leaves the page without buying any product, reward = -5.





- We deploy our MA-RDPG online in Taobao
- We choose three baselines
  - **♦** EW (Empirical Weight) + L2R (**Learning to rank**, a strong model previously used by **Taobao**)
  - ◆ L2R+EW
  - ◆ L2R+L2R





#### • GMV gap evaluated on an online Taobao platform

#### Relative improvement against EW+EW

| day  | EW + L2R |         |       | L2R + EW |         |       | L2R + L2R |         |       | MA-RDPG |         |       |
|------|----------|---------|-------|----------|---------|-------|-----------|---------|-------|---------|---------|-------|
|      | main     | in-shop | total | main     | in-shop | total | main      | in-shop | total | main    | in-shop | total |
| 1    | 0.04%    | 1.78%   | 0.58% | 5.07%    | -1.49%  | 3.04% | 5.22%     | 0.78%   | 3.84% | 5.37%   | 2.39%   | 4.45% |
| 2    | 0.01%    | 1.98%   | 0.62% | 4.96%    | -0.86%  | 3.16% | 4.82%     | 1.02%   | 3.64% | 5.54%   | 2.53%   | 4.61% |
| 3    | 0.08%    | 2.11%   | 0.71% | 4.82%    | -1.39%  | 2.89% | 5.02%     | 0.89%   | 3.74% | 5.29%   | 2.83%   | 4.53% |
| 4    | 0.09%    | 1.89%   | 0.64% | 5.12%    | -1.07%  | 3.20% | 5.19%     | 0.52%   | 3.74% | 5.60%   | 2.67%   | 4.69% |
| 5    | -0.08%   | 2.24%   | 0.64% | 4.88%    | -1.15%  | 3.01% | 4.77%     | 0.93%   | 3.58% | 5.29%   | 2.50%   | 4.43% |
| 6    | 0.14%    | 2.23%   | 0.79% | 5.07%    | -0.94%  | 3.21% | 4.86%     | 0.82%   | 3.61% | 5.59%   | 2.37%   | 4.59% |
| 7    | -0.06%   | 2.12%   | 0.62% | 5.21%    | -1.32%  | 3.19% | 5.14%     | 1.16%   | 3.91% | 5.30%   | 2.69%   | 4.49% |
| avg. | 0.03%    | 2.05%   | 0.66% | 5.02%    | -1.17%  | 3.09% | 5.00%     | 0.87%   | 3.72% | 5.43%   | 2.57%   | 4.54% |

Recent results online: MA-RDPG gains 3% improvement against L2R+L2R





Learning process of the loss function, critic value and GMV

gap

**78** 





#### Case Study







Main Search Results





#### Summary

- Multi-scenario ranking (or optimization) as a fully cooperative, partially observable, multi-agent sequential decision problem
- Multi-agent, deterministic policy RL to enable multiple agents to work collaboratively to optimize the overall performance.
- **Significant gain** in improving ranking systems in real online service (Taobao)
- Learning from user feedback, through interactions!





#### Messages and Lessons

- Keys to the success of RL in NLP
  - ◆ Formulate a task as a **natural sequential decision** problem where current decisions affect future ones!
  - ◆ Remember the **nature** of **trial-and-error** when you have no access to full, strong supervision.
  - ◆ Encode the **expertise** or **prior knowledge** of the task in rewards.
  - ◆ Applicable in many **weak supervision** settings.





#### Messages and Lessons

- Lessons we learned
  - ◆ A warm-start is important, using pre-training (due to too many spurious solutions and too sparse rewards)
  - Very marginal improvements to full supervision settings
  - Very marginal improvements for large action space problems (e.g., language generation)
  - ◆ Patient enough to the **training tricks and tunings**





#### Thanks for attention!





# Language Generation: Dialogue as an Example

Minlie Huang
Tsinghua University



#### Thanks for Your Attention

- Minlie Huang, Tsinghua University
- aihuang@tsinghua.edu.cn
- http://aihuang.org/p
- Recruiting post-doctors!

