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Why SSL?

� Yann Lecun:

� Human and animal babies

learning by observations
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Learning Paradigms

� Unsupervised learning: P(X)
u Autoencoder, VAE, Boltzmann Machine

� Supervised learning: P(y|X)
u SVM, NB, DT, MLP, CNN, RNN

� Semi-supervised learning: labeled data + unlabeled data
u Self-training
u Self-supervised learning (sometimes)
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Key Concepts

� Pretraining

� Self-training

� Self-supervised learning
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Pretraining + Fine-tuning

Labeled/unlabeled data

Pretraining

Task-specific
labeled data

Fine-tuning
Task-specific
Models

Pretrained
General models

• Pretrained on ImageNet (labeled), fine-tuned on image classification, detection, segmentation
• Pretrained on large text corpora (unlabeled), fine-tuned for NLU tasks: BERT, GPT, etc.
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Self-training

Teacher
models

Noisy labeling
Unlabeled data

Noisy student models

retraining
retraining

Labeled data

loop
pseduo labels
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Self-training with Noisy Student

• Adding noise to the student (augmentation, dropout, stochastic depth)
• Using student models that are not smaller than the teacher

Self-training with Noisy Student improves 
ImageNet classification.
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Self-Supervised Learning (SSL)

Trained
models

training

Data augmentation

Data corruption

Negative sampling

Labeled/unlabeled
data

Supervision signals
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SSL: predicting future from past

Context (human written): In a shocking finding, scientist discovered a herd of 
unicorns living in a remote, previously unexplored valley, in the Andes Mountains. 
Even more surprising to the researchers was the fact that the unicorns spoke 
perfect English.

Sequence/stream data
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SSL: predicting future from past

Representation Learning with Contrastive Predictive Coding. Van den Oord et al. 2018
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SSL: recovering from corruption/perturbation
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SSL in natural language processing
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SSL in NLP: language modeling

� Estimating P(present|context)

sum

wt-2 wt-1 wt+1 wt+2

wt

CBOW
wt

SkipGram

!"#: log ((*+|*+-.*+-/*+0/*+0.) !"#: 2
3
log((*+03|*+)

!"#: 2
+
log((*+|*/*. …*+-/)

wt-2 wt-1 wt+1 wt+2
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SSL in NLP: masked language modeling

Recovering masked words in the input text
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SSL in NLP: masked language modeling

Span length distribution

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, Omer Levy: SpanBERT: Improving 
Pre-training by Representing and Predicting Spans. Trans. Assoc. Comput. Linguistics 8: 64-77 (2020).
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SSL in NLP: masked language modeling

� Machine reading comprehension � Masking strategies
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SSL in NLP: permutation language modeling

� XLNet: Permutation Language Model

max$z∼'([*
+,-

.
log 23(567 ∣ xz97)]

1 2 3 4

Z1: P(1)*P(2|1)*P(3|1,2)*P(4|1,2,3)
Z2: P(3)*P(1|3)*P(2|3,1)*P(4|3,1,2)
Z3: P(2)*P(4|2)*P(3|2,4)*P(1|2,4,3)

w’w
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SSL in NLP: permutation language modeling

� Permutation language modeling outperforms MLM significantly (XLNet vs. BERT)

� The model structure Transformer-XL performs better than vanilla Transformer (XLNet
vs. -memory)

� NSP seems to degrade the performance of XLNet (XLNet vs. +next-sent pred)



26

SSL in NLP: text order prediction

� Bert: Next Sentence Prediction

� Negative sampling
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SSL in NLP: text order prediction

� Does next sentence prediction (NSP) work well�

u This 2-class classification task may be too easy for BERT to learn.
u The input format of two sentence segments may not be consistent with downstream tasks.

Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019)
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SSL in NLP: text order prediction

� StructBERT: word shuffle in subsequence

Shuffled sub-sequence

Wei Wang et al: StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding. 
ICLR 2020.



29

SSL in NLP: text order prediction

StructBERT: sentence-order type prediction
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SSL in NLP: text order prediction

� Fine-grained text order prediction tasks at the word level and the sentence level 

outperform vanilla NSP in BERT.
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SSL in NLP: sentence distance prediction

� CONPONO: Distance Prediction between Sentences

!"#$ = &' (", ("#$ , *" = &'((")

ℒ$ = −/0[log
exp(!"#$8 9$*")

∑;<∈0 exp(!>89$*")
]

Objective:
select candidate in S which has k-distance to ("

Negative samples:
1) in the same document, but distance is not k to ("
2) randomly sampled from other documents 
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SSL in NLP: sentence distance prediction

� CONPONO performs better than BERT-style models in the discourse-level 

representation tasks

� Different settings of k (window size) may work in different tasks. 
u k>1 seems key to downstream tasks, because there is more variation farther from the anchor 

sentence.
u Larger distances (k>2) from the anchor sentence lead to more ambiguity.
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SSL in NLP: replaced token detection

� ELECTRA: Replaced Token Detection
ℒ = ℒ#$# %, '( + *ℒ+,-.(%, '+)

Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning: ELECTRA: Pre-training Text 
Encoders as Discriminators Rather Than Generators. ICLR 2020.
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SSL in NLP: replaced token detection

� Replaced token detection consistently outperforms language modeling (GPT) and 

masked language model (BERT, RoBERTa) given the same compute budget
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SSL in NLP：other tasks

� Dialog modeling (Wu et al. ACL2019)

� Sequence-to-sequence generation (He et al. ICLR 2020)

� Machine reading comprehension (Niu et al. ACL 2020; Klein and Nabi

ACL 2020)

� Text classification (5+ papers)
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Evidence finding in MRC

A Self-Training Method for Machine Reading Comprehension with Soft Evidence 
Extraction. Niu et al. ACL 2020
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Unreferenced evaluation of NLG

UNION: An Unreferenced Metric for Evaluating 
Open-ended Story Generation. Guan&Huang.
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Summary

� Self-Supervised Learning (SSL) is learning dependencies
u Pixel-level, patch-level, word-level, sentence-level, discourse-level, etc.
u Vector-level: making learned representations more predictive
u Task-level: encoding task-agnostic information vs. task-specific information

� For NLP
u Data augmentation is hard (label-preserving)
u (Strong) Negative samples are hard to collect
u Data perturbation seems to be very effective in many tasks
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