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Information Shared by Many Objects

Chong Long∗, Xiaoyan Zhu†, Ming Li‡, Bin Ma§

ABSTRACT
If Kolmogorov complexity [25] measures information in one
object and Information Distance [4, 23, 24, 42] measures
information shared by two objects, how do we measure in-
formation shared by many objects? This paper provides
an initial pragmatic study of this fundamental data mining
question. Firstly, Em(x1, x2, . . . , xn) is defined to be the
minimum amount of thermodynamic energy needed to con-
vert from any xi to any xj . With this definition several the-
oretical problems have been solved. Second, our newly pro-
posed theory is applied to select a comprehensive review and
a specialized review from many reviews: (1) Core feature
words, expanded words and dependent words are extracted
respectively. (2) Comprehensive and specialized reviews are
selected according to the information among them. This
method of selecting a single review can be extended to select
multiple reviews as well. Finally, experiments show that this
comprehensive and specialized review mining method based
on our new theory can do the job efficiently.

Keywords
data mining, text mining

1. INTRODUCTION
A great deal of data mining research can be regarded as gath-
ering information from information carrying objects. How-
ever, without a general agreement of what is information in
one object, what is information shared by two objects, and
what is information shared among many objects, we end up
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with dozens of arbitrary measures and algorithms that per-
haps optimal under one measure, but not under another.
The authors of [39] have articulated this problem. The field
will certainly continue to grow and flourish without settling
such a problem, as it has been, as a field of engineering.

This work represents another step of our continued efforts to
solve this problem. Over the past decade, we have answered
the question of “what is the shared information between two
objects”. We introduced the metric of information distance
[4, 23, 24] that is provably better than all other “reasonable”
metrics in all application domains. These include all met-
rics listed in [39] that satisfy distance metric requirements
and when they are normalized to the range of 0 and 1 to be
compared with the normalized information distance. This
theory has been widely accepted and further studied by the
theoretical community [41, 40, 36, 27, 26, 9]. Our theory has
also led to several successful applications in the data mining
community, for example, [18, 42]. In [18], Keogh, Lonardi,
and Ratanamahatana compared a variant of our approach
in [23] to 51 measures from 7 data mining related confer-
ences including SIGKDD, SIGMOD, ICDM, ICDE, SSDB,
VLDB, PKDD, PAKDD, and have concluded that our in-
formation distance based method was superior to all these
parameter-laden methods on their benchmark data. In the
meantime, the theory has found dozens of applications in
many fields from weather forecasting to software engineer-
ing, and to bioinformatics [1, 3, 8, 11, 12, 10, 14, 19, 21,
20, 22, 38, 30, 31, 32, 35, 2, 34, 28, 29]. A complete list of
references is in the third edition of [25].

However, in many data mining applications, we are more
interested in mining shared information from many, not just
two, information carrying entities. For example, what is the
public opinion on the United States presidential election,
from the blogs? What do the customers say about a prod-
uct, from the reviews? Which article, among many, covers
the news most comprehensively? Or specialized in one par-
ticular news item?

Kolmogorov complexity and our prior theory of information
distance are not sufficient for these tasks. Kolmogorov com-
plexity deals with one object and information distance deals
with two objects. There is a conspicuous gap: a theory
dealing with many objects.

2. PRELIMINARIES
2.1 Information in one object



Kolmogorov complexity was introduced almost half a cen-
tury ago by R. Solomonoff, A.N. Kolmogorov and G. Chaitin,
see [25]. It is now widely accepted as an information theory
for individual objects parallel to that of Shannon’s informa-
tion theory which is defined on an ensemble of objects. Fix
a universal Turing machine U . The Kolmogorov complexity
of a binary string x condition to another binary string y,
KU (x|y), is the length of the shortest (prefix-free) program
for U that outputs x with input y. It can be shown that for
different universal Turing machine U ′, for all x, y

KU (x|y) = KU′(x|y) + C,

where the constant C depends only on U ′. Thus we sim-
ply write KU (x|y) as K(x|y). We write K(x|ε), where ε is
the empty string, as K(x). For a comprehensive study of
Kolmogorov complexity and its applications, see [25].

2.2 Information Distance between two objects
In the classical Newton’s world,“distance”is measured uniquely.
This has not been the case for distance in cyber space. A
good information distance metric should not only be ap-
plication independent but also provably better than other
“reasonable” definitions.

Traditional distances such as the Euclidean distance or the
Hamming distance fail for even trivial examples. Tan et al
[39] have demonstrated that none of the 21 metrics used in
data mining community is universal, practically. In fact, for
any computable distance, we can always find counterexam-
ples.

What would be a good departure point for defining an “in-
formation distance” between two objects? To answer this
question, in the early 1990’s, we [4] have studied the energy
cost of conversion between two strings x and y. John von
Neumann hypothesized that performing 1 bit of information
processing costs 1KT of energy, where K is the Boltzmann’s
constant and T is the room temperature. Observing that re-
versible computations can be done for free, in early 1960’s
Rolf Landauer revised von Neumann’s proposal to hold only
for irreversible computations. We proposed in [4] to use the
minimum energy needed to convert between x and y to de-
fine their distance, as it is an objective measure. Thus, if one
wishes to erase string x, then one can reversibly convert it
to x∗, x’s shortest effective description, then erase x∗. Only
the process of erasing |x∗| bits is irreversible computation.
Carrying on from this line of thinking, we have defined in [4]
that the energy to convert between x and y to be the small-
est number of bits needed to convert from x to y and vice
versa. That is, with respect to a universal Turing machine
U , the cost of conversion between x and y is:

E(x, y) = min{|p| : U(x, p) = y, U(y, p) = x} (1)

It is clear that E(x, y) ≤ K(x|y)+K(y|x). From this obser-
vation, and some other concerns, we have defined the sum
distance in [4]:

Dsum(x, y) = K(x|y) + K(y|x).

However, the following theorem proved in [4] was a surprise.

Theorem 1. E(x, y) = max{K(x|y), K(y|x)}.

Thus, the max distance was defined in [4]:

Dmax(x, y) = max{K(x|y), K(y|x)}.
Both distances are shown to satisfy the basic distance re-
quirements such as positivity, symmetricity, triangle inequal-
ity, in [4]. It was further shown that Dmax and Dsum mi-
norize (up to constant factors) all other distances that are
computable and satisfies some reasonable density condition
that within distance k to any string x, there are at most 2k

strings. Formally, a distance D is admissible if
∑

y

2−D(x,y) ≤ 1. (2)

Dmax(x, y) satisfies the above requirement because of Kraft’s
Inequality (with the prefix-free version of Kolmogorov com-
plexity). It was proved in [4] that for any admissible com-
putable distance D, there is a constant c, for all x, y,

Dmax(x, y) ≤ D(x, y) + c. (3)

Putting it bluntly, if any such distance D discovers some
similarity between x and y, so will Dmax.

Then, after normalization [23] and [24],

dmax(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} , (4)

this theory has been initially applied to alignment free whole
genome phylogeny [23], chain letter history [5], language his-
tory [3, 24], plagiarism detection [8], and more recently to
music classification and clustering [11, 10], parameter-free
data mining paradigm [18], protein sequence classification
[20], protein structure comparison [16], heart rhythm data
analysis [37, 35], question and answering system [42], bioin-
formatics [28, 29], and many more. However, in many of
these applications, even when many objects are involved,
only pair-wise information distance is computed. This has
limited the applicability of this theory.

3. SHARED INFORMATION AMONG MANY
OBJECTS

Can we generalize the theory of information distance to more
than two objects? We make a new proposal in this section
and perform experiments in the next section.

Similar to Formula 1, given strings x1, . . . , xn, we can define
the minimum amount of thermodynamic energy needed to
convert from any xi to any xj as:

Em(x1, . . . , xn) = min{|p| : U(xi, p, j) = xj for all i, j} (5)

Clearly,

Em(x1, . . . , xn) ≤
∑

i

K(x1x2 . . . xn|xi).

However, similar to Theorem 1, the following theorem demon-
strates a rather surprising property.

Theorem 2. Modulo to an O(log n) additive factor,

Em(x1, . . . , xn) = max
i

K(x1x2 . . . xn|xi)



Proof. Suppose all binary strings are given in a list s1,
s2, . . .. Define a set V as follows: a vector v = (i1, i2, . . . , in)
is in V if and only if K(si1si2 . . . sin |sij ) ≤ K(x1x2 . . . xn|xj)
for every j = 1, 2, . . . , n.

Regard V as the vertices of a graph G = 〈V, E〉. Two vertices
u = (u1, . . . , un) and v = (v1, . . . , vn) are such that (u, v) ∈
E if and only if there is 1 ≤ j ≤ n such that uj = vj . For any
given u ∈ V and 1 ≤ j ≤ n, by the definition of V , there are
at most 2K(x1x2...xn|xj) vertices v ∈ V such vj = uj . Denote
D = maxi K(x1x2 . . . xn|xi). The degree of the graph G is
therefore bounded by

∑
j

2K(x1...xn|xj) ≤ n× 2D.

It is known that a graph with degree d has a d-coloring.
Therefore, G has a coloring V = V1∪V2∪ . . .∪VK such that
K ≤ n× 2D. Clearly, (x1, x2, . . . , xn) ∈ V . In order to com-
pute xi from xj for any pair of i and j, a universal turing ma-
chine only needs to know which Vk contains (x1, x2, . . . , xn).
Such a program needs only log2(n × 2D) = D + log2 n
bits.

Notice that Theorem 2 is a strong claim. Comparing to
Theorem 1 where the saving is only linear, the saving here
is quadratic. It is possible to prove that Em satisfies the
usual metricity properties such as being symmetric and sat-
isfying the triangle inequality. It is also possible to prove
the Em also has the “universality” property that for any
other non-trivial distance E′

m for many objects satisfying
the above properties, we always have for all x1, . . . , xn, we
have Em(x1, . . . , xn) ≤ E′

m(x1, . . . , xn) + O(1). Thus this
provides a theory guiding us to compute how much infor-
mation a given set of n objects share.

The following theorem is a corollary of Theorem 2:

Theorem 3. Modulo to an O(log n) additive factor,

min
i

K(x1 . . . xn|xi) ≤ Em(x1, . . . , xn) ≤ min
i

∑

k 6=i

Dmax(xi, xk).

(6)

Given n objects, the left-hand side of the equation may be
interpreted as the most comprehensive object that contains
the most information about all of the others. The right-
hand side of the equation may be interpreted as the most
specialized object that is similar to all of the others.

Let us consider news items on the internet. If we wish to
choose a news article that covers the most news, we can use
the left hand side of Theorem 3. If we wish to look at a
typical coverage of a single topic, we can use the right-hand
side of Theorem 3.

In the next section, we will use this new theory to guide
our practical work. The easiest-to-obtain dataset for exper-
imenting our theory turns out to be product reviews. These
data can be easily annotated, too. As it turns out, our work
also provides an interesting fresh perspective to the work of
summarization.

4. REVIEW SELECTION USING INFORMA-
TION DISTANCE

4.1 Comprehensive and Specialized Reviews
With the rapid development of Web2.0 and e-commerce that
emphasizes the participation of users, more and more Web-
sites, such as Amazon (http://www.amazon.com) and Epin-
ions (http://www.epinions.com), encourage people to ex-
press opinions on products by posting reviews [43]. These
reviews are very useful for readers and will possibly influence
their purchasing decisions. However, it would cost too much
time for readers to read all of the hundreds of reviews of the
same product. Thus, automatic review mining and sum-
marization is a very practical concern. The most research
on this topic focus on feature-opinion pairs extraction and
sentiment orientation decision [17, 33, 15, 7].

However, a human reader is usually not completely satisfied
by a machine generated dull report and may still prefer to
read a vivid and complete review article written by a good
human writer. This raises the need of selecting the best
review from a set of reviews. If only one review from a
set was to be read, the most sensible choice would be the
most comprehensive review that covers the most information
about the other reviews. This is the first goal of our review
selection method.

After the most comprehensive review is read, a user may be-
come more interested in one particular feature of the product
and would like to read another concise and representative
review focusing on that feature only. Therefore it becomes
useful to select the best specialized review that focuses on
a given feature and represents the other reviewers’ opinions
on that feature only. This becomes the second goal of our
review selection method.

Our review selection method is based on the information dis-
tance discussed in the previous section. From the discussion
after Theorem 3, the left-hand side and right-hand side of
Equation (6) defines a way to select the most comprehensive
and the best specialized reviews, respectively. However, our
problem is that neither the Kolmogorov complexity K(·, ·)
nor Dmax(·, ·) is computable. Therefore, we have to find a
way to “approximate” these two measures.

The most useful information in a review article is the English
words that are related to the product features. If we can ex-
tract all of these related words from the review articles, the
size of the word set can be regarded as a very rough estima-
tion of information content (or Kolmogorov complexity) of
the review articles. Although this is a very inaccurate ap-
proximation, in Section 5 we will see that this already gives
very good practical results.

Our method is outlined in the following. First, for each
type of product (such as digital camera), a small set of core
feature words (such as price, image) is generated through
statistics. Then this core set of words are used to generate
the expanded words with an algorithm. Thirdly, an English
parser is used to find the dependent words associated to the
occurrences of the core feature words and expanded words in
a review. For each review-feature pair, the union of the core
feature words and expanded words in the review, and their



dependent words found by the parser define the related word
set of the review on the feature. Lastly, each distinct word in
a word set is assigned with one unit of information content;
and the left-hand side and right- hand side of Formula (6)
are used to select the comprehensive review and specialized
review, respectively.

4.2 Word Extraction
4.2.1 Features and Core Feature Words
Here“features”broadly mean product features (or attributes)
and functions that have been commented on in reviews[17].
For example, pixel, memory, shutter, battery,. . . , are fea-
tures of a digital camera. Given a feature, the core feature
words are the very few most common English words that are
used to refer to that feature. For example, both“image”and
“picture” are used to refer to the same feature of a digital
camera.

Feature words are the most direct and frequent words de-
scribing a feature, therefore, if there is a feature word in a
sentence, it is most likely talking about this feature.

In [17], the authors indicated that when customers comment
on product features, the words they use converge. Accord-
ing to the statistical results of our training corpus, we can
get the same conclusion. If we remove the feature words
with frequency lower than 1% of the total frequency of all
feature words, the remaining words, which are just core fea-
ture words, can still cover more than 90% occurrences. Then
some of those with the same meaning (such as “image” and
“picture”) are grouped into one feature. In our experiments,
on average, each product’s each feature has 1.4 core feature
words.

4.2.2 Expanded Words
Apart from core feature words, many others less-frequently
used words that are connected to the feature also contribute
to the information content of the feature. For example,
“price” is an important feature of a product, but the word
“price” is usually dropped from a sentence. Instead, words
such as “$”, “dollars”, “USD”, and “CAD” are used. It would
be impossible to manually enumerate all these different ex-
pressions of the same thing. Therefore, these expanded
words should be generated automatically.

We use information distance to expand words. In [12], the
Google code of length G(x) represents the shortest expected
prefix-code word length of the associated Google event x.
Then the Google distribution can be used as a compressor
for the Google semantics associated with the search terms.
Normalized Google distance(NGD) is defined as follows:

NGD(x, y) =
G(x, y)−min(G(x), G(y))

max(G(x), G(y))

=
max{log f(x), log f(y)} − log f(x, y)

log N −min{log f(x), log f(y)}
where f(x) denotes the number of pages containing x, and
f(x, y) denotes the number of pages containing both x and
y, as reported by Google.

In our work, the distance d between words is defined ac-
cording to NGD based on the words’ frequencies and co-
occurrence frequencies in the training corpus. Let α be a

feature and A be the set of its core feature words. The dis-
tance between a word w and the feature α is then defined
to be

d(w, α) = min
v∈A

d(w, v).

Then a distance threshold is used to determine which words
should be included in the set of expanded words for a given
feature.

4.2.3 Dependent Words
If a core feature word or an expanded word is found in a
sentence, the words which have grammatical dependent re-
lationship [13] with it are called the dependent words. For
example, in sentence “4x digital zoom is great”, the words
“4x”, “digital” and “great” are all dependent words of the
core feature word “zoom”. All these words also contribute
to the reviews and are important to determine the reviewer’s
attitude towards a feature.

The Stanford Parser [13] is used to parse each review. For
review i and feature j, the core feature words and expanded
words that occur in the review are first computed. Then the
parsing result is examined to find all the dependent words
for the core feature words and expanded words.

The word set Sij is defined to be the union of all the core
feature words and expanded words that occur in the review,
plus all of their expanded words. Thus, a review is repre-
sented by a vector of word sets for all the product’s features:
Si = (Si1, Si2, . . . , Sin). Notice that Sij and Sij′ for two dif-
ferent features j and j′ may share some common words, but
with perhaps totally different meanings. For this reason,
it is very important to use an English parser and keep the
related word sets for different features separately.

4.3 Computing Information Distance
Let S and T be two sets of words, and each word carries one
unit of information. Then the Kolmogorov complexity can
be intuitively estimated by

K(S) = |S|, K(T ) = |T |, and K(S|T ) = |S \ T |.
Here |X| is the size of the set X. Such intuition can be
extended to vectors of sets. For two vectors of sets Si =
(Si1, Si2, . . . , Sin), i = 1, 2, define

S1S2 = S1 ∪ S2 = (S11 ∪ S21, . . . , S1n ∪ S2n),

K(Si) =

n∑
j=1

K(Sij),

and

K(S1|S2) =

n∑
j=1

K(S1j |S2j).

Then

Dmax(S1, S2) = max(K(S1|S2), K(S2|S1))

and K(S1S2 . . . Sn|Si) can all be naturally defined as be-
fore. Thus, we are able to use Equation (6) for our review
selection.



If there are m reviews x1, x2, . . . , xm, and n features u1, u2, . . . , un,
straightforwardly from the left-hand side of Equation (6),
the most comprehensive review i is such that

i = arg min
i

Dmax(Si, S1 . . . Sn),

that is,

i = arg min
i

K(S1 . . . Sn|Si). (7)

The best specialized review needs some minor changes to
the right-hand side of Equation (6). Without modification,
the best specialized review i for a feature j would be such
that

i = arg min
i

∑

k

Dmax(Sij , Skj).

However, for specialized review we want that (a) the review
focuses on the given feature only, and (b) an review article
that does not discuss the feature should not be counted in
the selection. Therefore, the above formula is modified to
be

i = arg min
i

∑

Skj 6=∅
Dmax(Si, Skj), (8)

here

Dmax(Si, Skj) = Dmax(Si, (∅, ∅, . . . , Skj , . . . , ∅))
where Skj is in jth entry.

More specifically, Sij is changed to Si to penalize the content
of review i not related to feature j; and the reviews with an
empty word set on feature j are excluded from the selection.

Our method of selecting a single review can be extended to
select multiple reviews as well. For example, one can adapt
the maximal marginal relevance method introduced in [6]
by using our distance, and select these reviews one by one
incrementally.

5. EXPERIMENTAL RESULTS
We conducted our experiments using customer reviews on
two electronics products: digital cameras (DC) and televi-
sions (TV). Totally 138,985 reviews containing 28 million
words are used as the corpus for extracting features and
computing information distances between feature words and
other words. With these distances, expanded words are ex-
tracted by method introduced in 4.2.2.

Our experiments focus on single comprehensive and special-
ized review selection.

5.1 Comprehensive Review Selection
To test the performance of comprehensive review selection,
six popular DC models from DC and eight TV models with
most reviews are selected, resulting 14 test sets with 1381
reviews, approximately 100 reviews each 1.
1All these reviews, together with their annota-
tions as well as our experimental data are avail-
able at our website http : //learn.tsinghua.edu.cn :
8080/2005310464/ComprehensiveAndSpecialized.htm.

Table 1: Top 1 Comprehensive Reviews
Product Name No. of Sets A B C D

DC 6 3 2 1 0
TV 8 3 3 2 0

Total 14 6 5 3 0
Labeled 17 66 264 1034

Two independent teams from Canada and China, each with
two people, annotated the reviews. Each review is annotated
by each team, independently, with one of the following four
labels according to its comprehensiveness:

1. Label ‘A’: the most comprehensive reviews. Each test
set should have only one review ranked ‘A’. In a few
cases, we allow a few more ’A’s since they are equally
good reviews.

2. Label ‘B’: the reviews are very close to the reviews
ranked ‘A’.

3. Label ‘C’: the reviews are fairly comprehensive, but
not as good as ‘A’ and ‘B’.

4. Label ‘D’: the reviews are incomprehensive, irrelevant,
or trash reviews (such as advertisements).

Then two annotations for each review, from each team, is
combined into the final annotation as follows: in each orig-
inal annotation, an ‘A’ is counted as 3 points, ‘B’ 2 points,
‘C’ 1 point and ‘D’ 0 point. A review with a sum of 6 or 5
points gets a final label ‘A’, a review with 4 or 3 points gets
‘B’, 2 or 1 ‘C’ and 0 ‘D’.

In our system, reviews are ranked according to equation (7),
and those ranked first in their test sets by our system are
called “top 1 reviews”, so there are 14 “top 1 reviews”. Table
1 evaluates how all top 1 reviews coincide with the anno-
tations. The last four columns show the number of top 1
reviews are labeled with ‘A’,‘B’,‘C’ and ‘D’ in human anno-
tation, respectively. The last row is the numbers of ‘A’, ‘B’,
‘C’ and ‘D’ labels, respectively, in annotation. Obviously,
most top 1 reviews are labeled with ‘A’s or ‘B’s, and no
‘D’s.

Then top N reviews are checked to see whether the reviews
ranked by information distance coincide with their compre-
hensiveness. Table 2 shows the results:

Firstly, it can be seen from first five columns that, in 70
reviews ranked top 5 in 14 test sets, there are 14 ‘A’s, 34
‘B’s, and 18 ‘C’s, only 4 ‘D’s. The last row shows the total
number of reviews that are labeled by ‘A’,‘B’,‘C’ and ‘D’,
respectively. More than half ‘A’ reviews are in top 2 of its
test set, and almost all ‘A’s are in top 10.

Then two manual annotations are used as baselines to be
compared with the result of our system, called “Baseline 1”
and“Baseline 2”in Table 2. As human annotations only have
four labels: ‘A’,‘B’,‘C’ and ‘D’, a simple method is used to
change them into numeric rankings: firstly, reviews labeled
‘A’ are ranked highest, followed by ‘B’, and then ‘C’. ‘D’s



Figure 1: Proportions of ‘A’ to ‘D’ in top N results
of our system and the annotation.

are all in the last. Second, reviews with the same label are
ranked randomly. For most test sets, each of them has only
one review labeled ‘A’, therefore, highest ranking reviews
are much less affected by random. These two baselines are
also measured by final annotation. The results are shown in
the last eight columns of Table 2. From this table we can
see human annotations differ slightly from each other. Our
system result is close to manual ones.

Figure 1 shows the proportions of ‘A’,‘B’,‘C’ and ‘D’ in top
N results of our system and in the annotation. It can be seen
from the figure that in the annotation, reviews labeled ‘A’
take a fairly small part (only 1.23%), and ‘D’s take almost
three quarters of the test set, while in Top 1 and Top 2
results, ‘A’s are around 40%.

5.2 Specialized Review Selection
A set containing 339 DC reviews are used as the special-
ized review selection task test set, and twelve features are
selected. Specialized reviews selected by our system are com-
pared with the human annotation, selected according to the
most frequent opinion on a specific feature. Nine of twelve
reviews selected by our system agree with human-annotated
popular opinion on particular feature.

Table 3 is the result of specialized review selection. The
first column contains DC features, and the second column
is the most frequently used sentence or phrase to describe
corresponding features, selected by human. The last column
shows the relevant sentences or phrases, selected by human,
of the specialized reviews selected by our system. According
to the table, except features “exposure”, “flash” and “mem-
ory”, reviews selected by our system agree with the humanly
selected opinion very well.

6. CONCLUSION AND FUTURE WORK
We have initially developed the theory of information dis-
tance among many objects and solved several theoretical
problems. We have provided a framework so that such a
theory can be applied to review mining. We have actually
built a comprehensive and specialized review mining system

Table 3: Specialized Review Selection. Third col-
umn: the reviews are automatically selected, but
the sentence / phrase for a specific feature is manu-
ally picked.

Feature
Popular Opinion
of the Review Set

Sentence or Phrase
of Selected Review

battery
battery life is
long/good/great

. . . battery life
is exceptional . . .

exposure
missing manually
adjustable exposure

. . . for low lighting
conditions increase
the exposure time
and you are done . . .

flash flash is enough/good
. . . the flash does
not go far enough . . .

image good pictures . . . great pictures . . .

lens lens error
. . . lens retraction
problem . . .

memory
not enough/need an
extra memory card

. . . don’t even really
need a larger memory
card . . .

pixel 6 megapixels . . . 6 megapixels . . .
price good price . . . excellent price . . .
screen large screen . . . large bright screen . . .
shutter fast/quick shutter . . . fast shutter lag . . .

video high quality
. . . has good resolution
even with videos . . .

zoom low optical zoom
. . . a higher optical
zoom would have
been appreciated . . .

based on our new theory and demonstrated the performance
of our system.

In the future work, we will further improve our approach by
using sentiment classification method. For example, while
talking about a type of digital camera, “great battery life”
has the same meaning with “long battery life”, therefore, if
sentiment information is considered, reviews selected by our
improved approach may be more typical and the accuracy
can be promoted.
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